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Universal Algebra

Modern universal algebra is the study
of general mathematical structures,
especially those with an ‘algebraic’
flavor. For example:

e Monads describe ‘extra algebraic
structure on objects of one fixed
category’.

e PR(Os describe ‘extra algebraic
structure on objects of any monoidal
category’.

e PROPs describe ‘extra algebraic

structure on objects of any sym-
metric monoidal category’.

o Algebraic Theories describe ‘ex-
tra algebraic structure on objects
of any category with finite prod-
ucts’.



For example:

e There’s a monad on Set whose
algebras are groups.

e There’s an algebraic theory whose
algebras in any category with
finite products C' are ‘groups in
C".

e There’s no PROP whose algebras
are groups, but there’s a PROP
for monoids.

PROPs describe fewer structures,
but apply to more contexts: e.g..
the category of Hilbert spaces with
its tensor product. In this quantum-
mechanical context we cannot ‘du-
plicate or delete information’, so the
gTOUp axiom

—1
g-g =1
cannot be expressed.



In modern universal algebra we de-
scribe operations using diagrams with
inputs and outputs. Physicists do
the same with Feynman diagrams:

\1 5
\\/ _|_\E_|_ \é +""|‘Q§\§"‘"’

For example, all the diagrams above
stand for operators between Hilbert
spaces:

He® H- — H,

Similar diagrams show up in other
contexts:

e clectrical circuits
e logic circuits
e flow charts

and part of our job is to unity these.



Monads

Using monads, we can see:

e Almost any algebraic structure
has a canonical presentation in
terms of generators and relations.

e But, there are ‘relations between
relations’, or ‘syzygies’.
e Also relations between relations

between relations, etc.

e We can build a space that keeps
track of these: the ‘bar construc-
tion’.

e The topology of this space sheds
light on the structure!



Adjunctions

We define mathematical gadgets by
starting with some category A and
putting extra structure on the ob-
jects of A to get objects of some
fancier category B. For example:

A = Set B = Mon
A = Set B = Grp
A = AbGrp B = Ring
A=Top B = TopGrp
In every case we have a ‘forgetful’
functor

R:B— A

but also a ‘free’ functor
L:A— B.

We call these left and right ad-
joints if there is a natural isomor-
phism

hom(La, b) = hom(a, Rb).
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The Canonical Presentation

Given an adjunction
L
?B
let’s try to get a ‘presentation’ of
b € B. First note:
hom(LRb,b) = hom(Rb, Rb)
€p — 1Rb
for some morphism
Cp- LRb— b

called the counit.
In the example

A = Set B = Mon

the monoid L Rb consists of words
of elements of the monoid b. The
counit maps ‘formal products’ in
LRb to actual products in b.



So, we have the raw material for a
presentation! To see the relations,

form:

€
LRLRb———~LRb—"——b
LR(ep)
This diagram always commutes. It’s

enlightening to check this when
A = Set B = Mon.
Then LRLRb consists of ‘words of

words’, and the commuting diagam
above says these give relations in
the presentation of b where all ele-
ments of b are generators.

In this example the diagram is a
‘coequalizer’, so we really have a
presentation. This is not always
true — but it is when the adjunc-
tion is ‘monadic’.



Relations Between
Relations
The canonical presentation is highly
redundant, so there will be rela-

tions between relations. We can see
these by forming a resolution of

b:
- (LR)*»—(LR)®»—— LRb—b
When objects of B are sets with
extra structure, this gives a ‘simpli-

cial set” with:
e LLRb as vertices,

o (LR)?b as edges,
e (LR)%b as triangles....
In general we get a ‘simplicial ob-

ject in B’. This is called the bar
construction.

Exercise: work out the details when

A =Set B = Mon.



Unit and Counit

Just as
hom(LRb,b) = hom(Rb, Rb)
€p — 1Rb
oives the counit
Cp- LRb— b

which ‘evaluates formal expressions’,
SO

hom(La, La) = hom(a, RLa)
]‘LCL — ia
gives the unit
1a.0 — RLa

which ‘maps generators into the free
algebra’. The unit and counit sat-
isty certain identities, best written
as diagrams....
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2-Categories

We've been talking about categories:

A

functors:

AOLOB

and natural transformations:
F

TN
Ae |Ye B
\G/

These are the objects, morphisms
and 2-morphisms of the 2-category
Cat. The definition of ‘2-category’
summarizes what we can do with
them in a purely diagrammatic way!

11



In a 2-category:

e we can compose morphisms:

L Zi L G L

with associativity and identities 1 4

e wWe can compose 2-morphisms
vertically:
F

7glo™

®o— — 0

NJdes

H
with associativity and identities 1

e wWe can compose 2-morphisms
horizontally:
LA
° | o/ﬂﬁ\o
NN
G G/

with associativity and identities 17 ,
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e and finally, the two ways of pars-
ing this agree:

In other words:

(8'8) o (d'a) = (8" 0 d')(B o a)

In this notation, an adjunction
consists of A% B with

1:10= RL, eLR=1p
satisfying the zig-zag identities:

1

NS

L ®
L
AN
o o 00 — “10
R

W NS
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String Diagrams

It’s fun to convert the above ‘globu-
lar’ diagrams into string diagrams:

F F
S TN
Ae “a o B s A@B
\/
G G

in which objects of a 2-category
become 2d regions:

A B

morphisms become 1d edges, and
2-morphisms become 0d vertices
thickened to discs. For example,

L:A— B, R:B— A
are drawn as:
L R
A|B B|lA
L R
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RL: A — A is drawn as:

L R LR
AlB| ° |[B|A| ~ WBA
L R LR
The unit and counit
1= RL, eLR=1
look like this:
LA R L
Al A A
& s
L R lp

or for short:

[

v

The zig-zag identities become:

.

15
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From the definition of adjunction
we can derive properties of

M=R[L:A— A

and

C=LR:B— B

and these become the definitions of
a monad and comonad.

For M we get a multiplication
m: M? = M

defined by:
W

We also have the unit

n1=M

[

16



These satisty associativity:

Y- Ny
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and the left and right unit laws:

V-1 -[&

These are ‘topologically true’: the
zig-zag identity and 2-category ax-
ioms let us prove them by warping
the pictures as if drawn on rubber!

Similarly, a comonad has a co-
multiplication and counit sat-
istying coassociativity and the
left and right counit laws. To
draw all these, just turn the above
pictures upside down and switch
white and shaded regions.
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The Bar Construction

Suppose M: A — A is a monad.
Let A be the category of finite or-
dinals and order-preserving maps.
For any order-preserving map

foli) — 1),
our pictures give us a 2-morphism
F(f): M= M

built from the multiplication and
unit:

_I_

\_J/

- -

0

|

1

[

So, we get a functor

F:A — hom(A, A).
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It C:B — B is a comonad, the

same pictures upside-down with col-
ors switched give a functor

F: A" — hom(B, B).

A functor from A°P is called an
augmented simplicial object.
In particular, if C' is a comonad in
Cat and b € B is an object, we get

F(b):A°Y — B,

an augmented simplicial object in
B:

—

O O Cb b
This portion is called the bar con-
struction:
b={ " =C%=C%=Cb}
b is a simplicial object: a func-

tor from the opposite of the cate-
gory of nonempty finite ordinals.
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The Moral: whenever we have a
comonad C: B — B, the bar con-
struction lets us ‘puff up’ any ob-
ject b € B to a simplicial object b
in which:

e formal products of generators
become vertices

e relations become edges

e relations between relations become
triangles, etc....

Paths in b are ‘rewrites’, ‘proofs
or ‘computations’ using relations in
the canonical presentation of b —
and we can define homotopies

between paths, etc!

S0, we can study rewriting processes
of rewriting processes of rewriting...
to our heart’s content.
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Algebras of Monads

To state good theorems about the
bar construction, we must restrict
to ‘monadic’ adjunctions.

We know every adjunction gives
a monad. Next we'll show every
monad

M:A— A

gives an adjunction

L
— A M
A 7 A

where AM is the ‘category of
algebras of M’. An adjunction is
monadic if it arises this way:.

21



Consider the ‘monad for monoids’
M : Set — Set

sending every set a to the set Ma
of words in a. To make a set a into
a monoid, we should choose

a:Ma — a

mapping formal products to actual
products in a. This should be
associative:

i \M
\/

and obey the left unit law:

Ma

1
“Ma

N

a

22



In general, given any monad
M:A— A,

we call a a: Ma — a an algebra
of M it it obeys associativity and
the left unit law.

There’s a category of algebras
of M. the Eilenberg—Moore
category AM. And, there’s an

adjunction
L
- N M
A 7 A

All these adjunctions:

A = Set AM = Mon

A = Set AM = CGrp

A = AbGrp AM = Ring

A =Top AM — TopGrp
arise from monads this way, so we
call them monadic.

23



The Big Theorem

Suppose
L

—— B

is a monadic adjunction and C' =
LR the resulting comonad. Then
any object b is a coequalizer of its

canonical presentation:
€Ch ep

C?b Cb b
Clep)
Moreover,
b={ - =ch=cH=Cb}

is the initial b-acyclic simplicial
object in B — namely, the initial
one for which Rb is equipped with
a deformation retraction to Rb.

First part: see Beck’s monadicity
theorem. Second part: see Todd
Trimble’s notes (in the references).

24



Some Remarks

1. We can get subobjects of b
using more efficient choices of gen-
erators, or relations, or relations be-
tween relations.... This is where
Squier’'s work on confluent termi-
nating presentations comes in!

2. A b-acyclic simplicial object in
B is sometimes called a resolu-
tion of b. This terminology is most
widespread in ‘homological algebra/’.
which studies simplicial abelian
eroups, otherwise known as chain
complexes of abelian groups.

25



Strict Monoidal Categories

A 2-category with one object is called
a strict monoidal category:

Monoidal Category 2-Category
o objects
objects morphisms
morphisms 2-morphisms
tensor product composite
of objects of morphisms
composite vertical composite
of morphisms of 2-morphisms
tensor product horizontal composite
of morphisms of 2-morphisms

For example: Set with its Carte-
sian product X, or Vect with its
tensor product ®, cleverly made to
be strictly associative and unital.

26



Feynman Diagrams and
Tensors

Physicists draw morphisms in monoidal
categories:

Frfa@b@c®d—e® f
cither as Feynman diagrams:

which are just string diagrams with
no shading on regions, or as
tensors:

with indices standing for inputs and
outputs. Penrose called the latter
approach abstract index nota-
tion.

27



In a monoidal category, we can com-
pose/tensor morphisms like this:

\&@

or equivalently, like this:
d
GegHY" = Foy™
where the Einstein summation
convention says that any index
appearing once as a superscript and
once as a subscript — ¢ in this ex-
ample — labels an ‘internal edge’.

In particle physics, edges of Feyn-
man diagrams are called particles.
Vertices are called interactions.
Internal edges are called virtual
particles.

28



Monads in Vect

In Vect, an adjunction turns out

to be a pair of dual vector spaces
V', V* with the unit

Sk

VeV*
and counit
V*®
o Ve
k

being the obvious maps. A monad
in Vect is an associative algebra.
Since an adjunction gives a monad,
a pair of dual vector spaces gives an
associative algebra: the matrix al-

gebra M =V @ V™.

\\\/ / M ?mM

M

29



A Monad in A

The category of finite ordinals, A,
is a strict monoidal category with
+ as its tensor product. 1 € A
is a monad with multiplication and
unit:

I+1
L 4
0
|i
1 [

People usually call a monad in a
strict monoidal category a monoid
object, so let’s do that! For exam-
ple: a monoid object in Vect is an
associative algebra.

A is special because it’s the free
monoidal category on a monoid
object! In other words...

30



Theorem: Given a strict monoidal
category C, there’s a 1-1 correspon-
dence between monoid objects in C
and functors

F:A—=2C

that preserve tensor products. Each
such functor gives a monoid object
F(1) with multiplication F'(m) and
unit F(2).

This explains the special role of A
in our discussion of monads. A monad
M:A — A is just a monoid object
in hom(A, A), so it gives us

F:A — hom(A, A).

Similarly: a comonad C: B — B is
a monoid object in hom(B, B)°P,
SO we get

F: A" — hom(B, B).

31



Monoidal Categories

Alas, strict monoidal categories are
rare in nature. In general, a monoidal
category Is:

e a category C
e a functor ®:C xC — C
e a unit object I € C

e natural isomorphisms called the
associator:

gy, (TQY)®z2 — 2R (YR 2)
left unitor:

bl @ —
and right unitor:

rex®I1 — x

such that...

32



the following diagrams commute:

e the pentagon equation:

(w@z)® (Y 2)

(wez)@y)® 2 w® (& (y® 2))

(W (zRyY) @z —2% v (z®y)® 2)

e the triangle equation:

(z @ why re(Iey)
\f\ @
T XY

Mac Lane’s coherence theorem says
these laws suffice to make all
diagrams built from ®, a, £, r com-
mute.

33



A functor F': C — D between monoidal
categories is monoidal if it is equipped
with:

e o natural isomorphism
Gy y: Flz) @ Fly) — F(r Qy)
e an isomorphism ¢: [ — F'(I)

such that these diagrams commute:

e compatibility with unitors:

I® F(z)—2 . Fg)

34



e compatibility with the
associator:

CF(2),F(y),F(2)

(F(z)® F(y)) @ F(z) — F(z) ® (F(y) ® F(z))

B,y @1 19D,
Fler®y) ® F(z) Fz)® F(y ® z)
Prwy,- Qs yo2
F((z®y) ® z) o Flz®(y® 2))
Gy,

Exercise: given a monoid object
M in C and a monoidal functor

F:C— 7D,

check that F'(M) becomes a monoid
object in D.

35



PROs

A PRO is a monoidal category C
for which every object equals x®"
for some fixed object x € C. Given
monoidal categories C and D, an
algebra of C in D is a monoidal
functor

F.-C—D
[f C is a PRO, this picks out an ob-
ject F'(x) € D and equips it with
algebraic structure.

For example, A is a PRO since ev-

ery object is of the form 1+---41.

A is called the PRO for monouds,
since an algebra of A in D

F:-A—7D

picks out F'(1) € D and equips it
with the structure of a monoid ob-
ject.

36



There’s a PRO for any untyped al-
gebraic structure with operations
of arbitrary source and target ar-
ity satistying equational laws with
no duplication, deletion or per-
mutation of arguments. To elim-
inate the last restriction, we need
‘PROPs’. To eliminate all three,

we need ‘algebraic theories’:

AlgTh «—— FinProdCat

PROP «——— SymmMonCat

PRO ¢ MonCat

Gadgets of the right-hand sort de-
scribe typed algebraic structures.

37



PROPs

There’s no PRO for commutative
monoids; to say ab = ba we need
to permute arguments. For this we
need PROPSs, which are special sym-
metric monoidal categories.

A braided monoidal category
C is a monoidal category equipped
with a natural isomorphism called
the braiding:

Bryx®y —yQu

x\/\y

making these diagrams commute...

38



e the hexagon equations:

—1
axuyVZ Bx7y®z

(tRY)Qz—([yer)®2

T® (Y 2)

Bx,y@z Oy,z,z

(Y®2) @ —y®(2Qz) —y®(z® 2

Y,=,x y@B,_')j'7

Ay y,z T®By -

TRYR®2z—1rR(YRz) —rX(2QY)
By, a:?é,y
2R QY —(2R1)y —(®2)®y

a1 Bz .®y

Z7$7y

A symmetric monoidal category

is a braided monoidal category with
—1.
B:U,y — Bij

:cyy B x%y
N (

For example: (Set, x), (Set, +), or
(Vect, ®), but not A.

39



A functor F:C — D between
symmetric monoidal categories is
symmetric monoidal if it’s
monoidal and satisfies:

e compatibility with the
braiding;:

F(z) ® Fly) 2259 ply) @ F(x)

(I)xay (I).%x

Flr ®y)

F ) F(y ® )

A PROP is a symmetric monoidal
category C for which every object
equals z®" for some fixed object
x € C. Given symmetric monoidal
categories C and D, an algebra of
C in D is a symmetric monoidal
functor

F-C—"7D

40



String Diagrams Revisited

We can reason in monoidal cate-
oories using 2-dimensional string di-
agrams. Similarly, we can reason in
braided monoidal categories using
3-dimensional string diagrams:

STy
AL

We can reason in symmetric monoidal
categories using 4-dimensional (or
higher-dimensional) string diagrams,
SINCce NOW:

-

Exercise: describe the PROP for
commutative monoids using string
diagrams.

41



Examples

The category FinSet of finite sets
and functions is a PROP with +
as its tensor product, since every
object equals 1 + --- 4+ 1. And
thisis the PROP for commutative
monoids!

In other words, (FinSet,+) is the
free symmetric monoidal category
on a commutative monoid object.
just as A is the free monoidal cat-
egory on a monoid object.

A°P is the PRO for comonoids,
since a monoidal functor F: A°P —
D is the same as a monoid object in
DCP — which we call a comonoid
object in D. Similarly, (FinSetP, +)
is the PROP for cocommutative
comonoids.

42



In physics, it’s important that the
category of 2d cobordisms is the
PROP for commutative Frobenius
algebras:

° 6

1 — x m:rXRr — T ecx—1 ANrx—zrQx

Monoid laws:
Comonoid laws:
Frobenius laws:  Commutativity:

43



Any semisimple commutative alge-
bra naturally gives rise to a com-
mutative Frobenius algebra satisty-
ing this extra law:

P

Commutative Frobenius algebras of
this sort are called strongly separa-
ble. The PROP for these algebras
is the category of cospans of finite
sets:

—

(:

X N /Y
f A g
See Rosebrugh, Sabadini and Wal-
ters for a proof. For Frobenius al-

gebras in physics, see Lauda and
Pfeiffer. (Links on my webpage.)
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Algebraic Theories

A category C has finite products
if it has:

e a terminal object 1, mean-
ing that for each x € C there is
a unique morphism

l
x-1

e for each pair of objects =,y a
binary product

XY
Ty Yy
meaning that any pair of maps to

x and y factors uniquely through
x X y:



An algebraic theory is a cate-
cory with finite products such that
every object equals " for some fixed
object x. Given categories with
finite products C and D, an
algebra of C in D is a product
preserving functor

F:C—7D

Algebraic theories can be seen as
special PROPs, since any category
with finite products becomes a sym-

metric monoidal category if we take
® to be x and I to be 1.

(There’s usually a choice of binary
products and terminal object, since
they're only unique up to canoni-
cal isomorphism. But this is harm-
less.)
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Theorem: A symmetric monoidal
category gives a category with
finite products with X = ®, 1 =1
iff there are monoidal natural trans-
formations

er:x — 1

and
Apix — 2R

such that these commute:

T Ay TR x T Ay TR x
1, | ex®1 1. | 1®e,
T——1Qx T—L—ax 1

S0, a symmetric monoidal category
becomes a category with finite prod-
ucts when we can duplicate and
delete variables using

Apx—2rQx, erpx—1

Exercise: bay this using string
diagrams.
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Examples

There’s an algebraic theory for any
untyped algebraic structure with

operations of arbitrary (finite) ar-
ity satisfying equational laws. For
example:

® oTOUPS

® rings

e not fields!

e vector spaces over a given field &

e associative algebras over k

Using categories with finite prod-
ucts we can describe any typed al-
gebraic structure with operations
of arbitrary arity satisfying equa-
tional laws. For example:

e chain complexes of abelian groups
e ring/module pairs

48



New Versus Old

Lawvere invented algebraic theories
to streamline Birkhofl’s approach
to universal algebra where a

variety is a set of operations, e.g.:

. (binary) ~! (unary) 1 (nullary)

together with a set of purely
equational axioms, e.g.:

(g-h)-k=g-(hk), 1lg=1 gl=y,
g9 =1 g'lg=1L
More generally, categories with
finite products C do the same job

as ‘typed varieties’. Given C we get
a typed variety with:

e one type per object of C
e one operation per morphism

e one axiom per equation between
morphisms

49



From this viewpoint, we can think
of PROPs as special algebraic theo-
ries where no variable appears twice
on the same side of any equation,
and the same variables appear on
both sides. For example,

(g-h)-k=g-(h-Fk)
is okay, but not
g-9=9
or
g-h=g.

In short: no duplication or dele-
tion of vartables!

This is related to the fact that ‘we
cannot clone a quantum’, nor can
we ‘delete a quantum’: (Hilb, ®)
is a symmetric monoidal category
where & is not the binary product
and 1 is not terminal.

50



Q: Viewed as lists of axioms, PROPs

are special algebraic theories. Viewed

as categories, algebraic theories are
special PROPs! What’s going on?

A: There’s a kind of ‘adjunction’:
PROP—— AlgTh

or more generally
L
SymmMonCat — FinProdCat

since
hom(LC, D) ~ hom(C, RD)

in a ‘natural’ way. For example:
think of the PROP for monoids C

a special algebraic theory LC,
and look at algebras of LC in some
category with finite products D.
These are the same as algebras of C
in the underlying symmetric monoidal
category RD of D!

o1



In fact

L: SymmMonCat — FinProdCat
and

R: FinProdCat — SymmMonCat

are ‘2-functors’ between 2-categories
and the ‘adjunction’ between them
is actually a ‘pseudo-adjunction’
since we only have an equivalence
of categories

hom(LC, D) ~ hom(C, RD)

instead of an isomorphism.

Instead of studying these general
concepts, let’s just study L and R.
They're interesting because they go
between the ‘classical” world of fi-
nite product categories (e.g. alge-
braic theories) and the ‘quantum’
world of symmetric monoidal cate-

gories (e.g. PROPs).
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Q: What does
R: FinProdCat — SymmMonCat

do when applied to an algebraic the-
ory like the theory of groups? What
sort of PROP do we get?

A: We get a PROP in which the di-
agonal and map to the unit object
have become explicit operations

ANxr—ax®z, ex—1

For example, if D is the algebraic
theory for groups, RD is the PROP

for cocommutative Hopf al-

gebras. In here the axiom g- g_1 —

1 becomes:
TR 1®1nv TR
va T
T T

I
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Q: What does the ‘pseudo-monad’
RL

SymmMonCat SymmMonCat

do?

A: Given a symmetric monoidal cat-
egory C, M = RL throws in new
morphisms

ANpx —>rQx, epx—1

satisfying the conditions that make
MC into a category with finite prod-
ucts. In other words, M gives C
the ability to duplicate and delete
information!

We will describe M in a beautiful
way using the ‘tensor product’ of
symmetric monoidal categories.

o4



SymmMonCat is a 2-category with:

e symmetric monoidal categories as
objects

e symmetric monoidal functors as
morphisms

e ‘monoidal natural transformations’
as 2-morphisms

where a natural transformation

F
TN

Ce |“eD
A
G

between monoidal functors is monoidal
if it gets along with tensor products
in the following way:...
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e compatibility with ®:

F(x)® Fy) — G(r) @ G(y)

®xy Fxﬂ

Flx ®y)

G(r ®y)

Ay

e compatibility with I

Here the isomorphisms
b, F(z) ® F(y) — Flz ®y)
and
¢: 1 — F(I)
are part of the monoidal functor F'.
and similarly I' and + are part of G.

o6



S0, given symmetric monoidal cat-
egories C and D, we get a category

hom(C, D) with:

e symmetric monoidal functors
F:C — D as objects

e monoidal natural transformations
a: F' — G as morphisms

or in other words:
e algebras of C in D as objects

e algebra homomorphisms as
morphisms.

We call hom(C, D) the category
of algebras of C in D. For ex-
ample: if C is the PROP for monoids,
hom(C, (Set, x)) is the category of
monoids, while hom(C, (Vect, ®))
is the category of associative alge-
bras.

o7



Given symmetric monoidal categories
C and D, hom(C,D) is always a
symmetric monoidal category in
a natural way! E.g. we can define
the tensor product of monoids, and
also of associative algebras.

Even better, given symmetric monoidal
categories C and D, there’s a sym-
metric monoidal category C ® D
such that:

hom(C®D, &) ~ hom(C,hom(D, &))

For example, if C is the PROP for
monoids, C°P is that for comonoids,
and C®C°P is that for ‘bimonoids’.
A bimonoid is both a monoid and
a comonoid, with all the comonoid
operations being monoid homomor-
phisms (and vice versa).

o8



Now, back to our pseudo-monad
M

SymmMonCat SymmMonCat

which takes any symmetric monoidal
category and endows it with finite
products. In a category with finite
products, every object is automat-

ically a cocommutative comonoid,
thanks to

NAp:x — T X T

and
er.x — 1

And indeed....

Theorem:
MC ~ C @ (FinSet?, +)
where (FinSet?) +) is the PROP

for cocommutative comonoids.
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Philosophical Postlude

Why do algebraic theories so nicely
describe a structured object in a
classical world, and PROPs a struc-
tured object in a quantum world?

In our world, physical objects act
approximately like point particles.
As time passes, they trace out 1d
paths in 4d spacetime: precisely the
string diagrams we use to reason
in symmetric monoidal categories!
S0, it’s not surprising that symmet-
ric monoidal categories seem like
a comfortable context for mathe-
matical objects.

But why are 1d paths in 4d space-
time related to symmetric monoidal
categories” The full explanation
involves n-categories....
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A symmetric monoidal category is
the same as a 4-category with one

j-morphism for 7 < 3:
THE PERIODIC TABLE

n =20 n=1 n =2
k=0 sets categories | 2-categories
k=1 monoids monoidal monoidal

categories | 2-categories
k = 2 | commutative | braided braided
monoids monoidal monoidal
categories | 2-categories
k=3 ¢ symmetric | sylleptic
monoidal monoidal
categories | 2-categories
k=4 ¢ ¢ symmetric
monoidal
2-categories
k — 5 (% ¢ ¢
k — 6 (%) (% (%)

k-tuply monoidal n-categories

n + k)-categories with only one
(n + k)-categ y
g-morphism for 7 < k
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1d tangles in codimension 1 are the

morphisms of a monoidal category
['Tang;:

T r* x

This is the free monoidal category
with duals on one object.

1d tangles in codimension 2 form a
braided monoidal category 1Tangs:

This is the free braided monoidal
category with duals on one object.

1d tangles in codimension 3 form

1Tangs, the free symmetric monoidal

category with duals on one object.
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In general we expect nTang;. to be
the free k-tuply monoidal n-category
with duals on one object:

THE TANGLE HYPOTHESIS

n=>0

®
*

1

n

ol

n=2
T T

<=




In short: since we perceive a uni-
verse of codimension 3 objects in
dimension 4, our ‘universal algebra’
uses 3-tuply monoidal 4-categories.

An extra simplification in classical
—1.e., non-quantum — logic is that
we can duplicate and delete infor-
mation. This is not really true in
the physical world, but our copy-
ing machines and wastebaskets do
a pretty good job of creating this
impression, so mathematicians like
symmetric monoidal categories where
this holds. These are categories
with finite products, the archety-
pal example being Set.

But, to get closer to reality we should
climb the n-categorical ladder, and
learn to love the quantum universe.
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