
Universal Algebra
and

Diagrammatic Reasoning

John Baez

Geometry of Computation 2006
January 30 - Feburary 3

=

figures by Aaron D. Lauda

available online at
http://math.ucr.edu/home/baez/universal/

1

http://math.ucr.edu/home/baez/universal/

Universal Algebra

Modern universal algebra is the study
of general mathematical structures,
especially those with an ‘algebraic’
flavor. For example:

•Monads describe ‘extra algebraic
structure on objects of one fixed
category’.

•PROs describe ‘extra algebraic
structure on objects of any monoidal
category’.

•PROPs describe ‘extra algebraic
structure on objects of any sym-
metric monoidal category’.

•Algebraic Theories describe ‘ex-
tra algebraic structure on objects
of any category with finite prod-
ucts’.

2

For example:

•There’s a monad on Set whose
algebras are groups.

•There’s an algebraic theory whose
algebras in any category with
finite products C are ‘groups in
C’.

•There’s no PROP whose algebras
are groups, but there’s a PROP
for monoids.

PROPs describe fewer structures,
but apply to more contexts: e.g.,
the category of Hilbert spaces with
its tensor product. In this quantum-
mechanical context we cannot ‘du-
plicate or delete information’, so the
group axiom

g · g−1 = 1

cannot be expressed.

3

In modern universal algebra we de-
scribe operations using diagrams with
inputs and outputs. Physicists do
the same with Feynman diagrams:

'''''''

��

�K
�K
�K
�K

��

+

��

	I
	I
	I

��

�Z
�U
�O
	I

�D

+ ''''''''

��

J

J

J

J

J

��

#c
�_

�V
�Q
M

J

�G
�C

+ · · · +

��
�� 	I

	I
	I

��

��

�Y
�T
�O

J

�E
�^

�^
�^

�G
�G

�Y
�Y + · · ·

For example, all the diagrams above
stand for operators between Hilbert
spaces:

He ⊗Hγ → He

Similar diagrams show up in other
contexts:

• electrical circuits

• logic circuits

• flow charts

and part of our job is to unify these.

4

Monads

Using monads, we can see:

•Almost any algebraic structure
has a canonical presentation in
terms of generators and relations.

• But, there are ‘relations between
relations’, or ‘syzygies’.

•Also relations between relations
between relations, etc.

•We can build a space that keeps
track of these: the ‘bar construc-
tion’.

•The topology of this space sheds
light on the structure!

5

Adjunctions

We define mathematical gadgets by
starting with some category A and
putting extra structure on the ob-
jects of A to get objects of some
fancier category B. For example:

A = Set B = Mon
A = Set B = Grp
A = AbGrp B = Ring
A = Top B = TopGrp

In every case we have a ‘forgetful’
functor

R:B → A

but also a ‘free’ functor

L:A→ B.

We call these left and right ad-
joints if there is a natural isomor-
phism

hom(La, b) ∼= hom(a,Rb).

6

The Canonical Presentation

Given an adjunction

A
L //B
R
oo

let’s try to get a ‘presentation’ of
b ∈ B. First note:

hom(LRb, b) ∼= hom(Rb,Rb)
eb 7→ 1Rb

for some morphism

eb:LRb→ b

called the counit.
In the example

A = Set B = Mon

the monoid LRb consists of words
of elements of the monoid b. The
counit maps ‘formal products’ in
LRb to actual products in b.

7

So, we have the raw material for a
presentation! To see the relations,
form:

LRLRb
eLRb //

LR(eb)
//LRb

eb //b

This diagram always commutes. It’s
enlightening to check this when

A = Set B = Mon.

Then LRLRb consists of ‘words of
words’, and the commuting diagam
above says these give relations in
the presentation of b where all ele-
ments of b are generators.

In this example the diagram is a
‘coequalizer’, so we really have a
presentation. This is not always
true — but it is when the adjunc-
tion is ‘monadic’.

8

Relations Between
Relations

The canonical presentation is highly
redundant, so there will be rela-
tions between relations. We can see
these by forming a resolution of
b:

· · ·
//

//

//

//

(LR)3b
//

//

//
(LR)2b

//

//LRb // b

When objects of B are sets with
extra structure, this gives a ‘simpli-
cial set’ with:
• LRb as vertices,
• (LR)2b as edges,
• (LR)3b as triangles....

In general we get a ‘simplicial ob-
ject in B’. This is called the bar
construction.

Exercise: work out the details when

A = Set B = Mon.

9

Unit and Counit

Just as

hom(LRb, b) ∼= hom(Rb,Rb)
eb 7→ 1Rb

gives the counit

eb:LRb→ b

which ‘evaluates formal expressions’,
so

hom(La,La) ∼= hom(a,RLa)
1La 7→ ia

gives the unit

ia: a→ RLa

which ‘maps generators into the free
algebra’. The unit and counit sat-
isfy certain identities, best written
as diagrams....

10

2-Categories

We’ve been talking about categories:

•A

functors:

A • F //• B

and natural transformations:

A • • B
F

""

G

<<

α
��

These are the objects, morphisms
and 2-morphisms of the 2-category
Cat. The definition of ‘2-category’
summarizes what we can do with
them in a purely diagrammatic way!

11

In a 2-category:

• we can compose morphisms:

• F //• G //•

with associativity and identities 1A

• we can compose 2-morphisms
vertically:

•
F

��G //

α
��

H

AA
β

��

•

with associativity and identities 1F

• we can compose 2-morphisms
horizontally:

• •
F

��

G

CC
α

�� • •
F ′

��

G′
CC

β
��

with associativity and identities 11A

12

• and finally, the two ways of pars-
ing this agree:

• ��
//

α
��

AA

α′��

• ��
//

β
��

AA

β′��

•

In other words:

(β′β) ◦ (α′α) = (β′ ◦ α′)(β ◦ α)

In this notation, an adjunction

consists of A
L //

B
R
oo with

i: 1A ⇒ RL, e:LR⇒ 1B
satisfying the zig-zag identities:

• L //
��• R //

EE

i
�� • L //

e
��

• = •
L

��

L

AA•1L
��

• R //
EE• L //

��

e
��

• R //

i
�� • = •

R

��

R

AA•1
��

13

String Diagrams

It’s fun to convert the above ‘globu-
lar’ diagrams into string diagrams:

A •
F

""

G

<<• Bα
��

 A B

F

G

α

in which objects of a 2-category
become 2d regions:

A B

morphisms become 1d edges, and
2-morphisms become 0d vertices
thickened to discs. For example,

L:A→ B, R:B → A

are drawn as:

A B

L

L

B A

R

R

14

RL:A→ A is drawn as:

A B

L

L

◦ B A

R

R

= A B A

R

R

L

L

The unit and counit

i: 1⇒ RL, e:LR⇒ 1

look like this:

A A

B

1A

L R

i
B B

A

1B

R L

e

or for short:

The zig-zag identities become:

= =

15

From the definition of adjunction
we can derive properties of

M = RL:A→ A

and
C = LR:B → B

and these become the definitions of
a monad and comonad.

For M we get a multiplication

m:M2⇒M

defined by:

We also have the unit

i: 1⇒M

16

These satisfy associativity:

=

and the left and right unit laws:

= =

These are ‘topologically true’: the
zig-zag identity and 2-category ax-
ioms let us prove them by warping
the pictures as if drawn on rubber!

Similarly, a comonad has a co-
multiplication and counit sat-
isfying coassociativity and the
left and right counit laws. To
draw all these, just turn the above
pictures upside down and switch
white and shaded regions.

17

The Bar Construction

Suppose M :A → A is a monad.
Let ∆ be the category of finite or-
dinals and order-preserving maps.
For any order-preserving map

f : [i]→ [j],

our pictures give us a 2-morphism

F (f):M i⇒M j

built from the multiplication and
unit:

1 + 1

��

1

0

��

1

So, we get a functor

F : ∆→ hom(A,A).

18

If C:B → B is a comonad, the
same pictures upside-down with col-
ors switched give a functor

F : ∆op → hom(B,B).

A functor from ∆op is called an
augmented simplicial object.
In particular, if C is a comonad in
Cat and b ∈ B is an object, we get

F (b): ∆op → B,

an augmented simplicial object in
B:

· · ·
//

//

//

//

C3b
oo

oo

oo //

//

//
C2boo

oo //

//Cboo // b

This portion is called the bar con-
struction:

b̄ =
{
· · ·

//

//

//

//

C3b
oo

oo

oo //

//

//
C2boo

oo //

//Cboo

}

b̄ is a simplicial object: a func-
tor from the opposite of the cate-
gory of nonempty finite ordinals.

19

The Moral: whenever we have a
comonad C:B → B, the bar con-
struction lets us ‘puff up’ any ob-
ject b ∈ B to a simplicial object b̄
in which:

• formal products of generators
become vertices

• relations become edges

• relations between relations become
triangles, etc....

Paths in b̄ are ‘rewrites’, ‘proofs’
or ‘computations’ using relations in
the canonical presentation of b —
and we can define homotopies
between paths, etc!

So, we can study rewriting processes
of rewriting processes of rewriting...
to our heart’s content.

20

Algebras of Monads

To state good theorems about the
bar construction, we must restrict
to ‘monadic’ adjunctions.

We know every adjunction gives
a monad. Next we’ll show every
monad

M :A→ A

gives an adjunction

A
L //

AMR
oo

where AM is the ‘category of
algebras of M ’. An adjunction is
monadic if it arises this way.

21

Consider the ‘monad for monoids’

M : Set→ Set

sending every set a to the set Ma
of words in a. To make a set a into
a monoid, we should choose

α:Ma→ a

mapping formal products to actual
products in a. This should be
associative:

MMa
M(α)

&&MMMMMMMMMM

ma
xxqqqqqqqqqq

Ma
α

&&NNNNNNNNNNNN Ma
α

xxpppppppppppp

a

and obey the left unit law:

a ia //

1
!!CCCCCCCCCCCCCCCCCC Ma

α
��

a

22

In general, given any monad

M :A→ A,

we call a α:Ma → a an algebra
of M if it obeys associativity and
the left unit law.

There’s a category of algebras
of M , the Eilenberg–Moore
category AM . And, there’s an
adjunction

A
L //

AMR
oo

All these adjunctions:

A = Set AM = Mon

A = Set AM = Grp

A = AbGrp AM = Ring

A = Top AM = TopGrp

arise from monads this way, so we
call them monadic.

23

The Big Theorem

Suppose

A
L //

B
R

oo

is a monadic adjunction and C =
LR the resulting comonad. Then
any object b is a coequalizer of its
canonical presentation:

C2b
eCb //

C(eb)
//Cb

eb //b

Moreover,

b̄ =
{
· · ·

//

//

//

//

C3b
oo

oo

oo //

//

//
C2boo

oo //

//Cboo

}

is the initial b-acyclic simplicial
object in B — namely, the initial
one for which Rb̄ is equipped with
a deformation retraction to Rb.

First part: see Beck’s monadicity
theorem. Second part: see Todd
Trimble’s notes (in the references).

24

Some Remarks

1. We can get subobjects of b̄
using more efficient choices of gen-
erators, or relations, or relations be-
tween relations.... This is where
Squier’s work on confluent termi-
nating presentations comes in!

2. A b-acyclic simplicial object in
B is sometimes called a resolu-
tion of b. This terminology is most
widespread in ‘homological algebra’,
which studies simplicial abelian
groups, otherwise known as chain
complexes of abelian groups.

25

Strict Monoidal Categories

A 2-category with one object is called
a strict monoidal category:

Monoidal Category 2-Category

• objects
objects morphisms

morphisms 2-morphisms
tensor product composite

of objects of morphisms
composite vertical composite

of morphisms of 2-morphisms
tensor product horizontal composite
of morphisms of 2-morphisms

For example: Set with its Carte-
sian product ×, or Vect with its
tensor product ⊗, cleverly made to
be strictly associative and unital.

26

Feynman Diagrams and
Tensors

Physicists draw morphisms in monoidal
categories:

F : a⊗ b⊗ c⊗ d→ e⊗ f
either as Feynman diagrams:

F@GAFBECD
???????????

��a

��b

��������

 c

�����������

�� d

��������

e

�� f

which are just string diagrams with
no shading on regions, or as
tensors:

F abcdef

with indices standing for inputs and
outputs. Penrose called the latter
approach abstract index nota-
tion.

27

In a monoidal category, we can com-
pose/tensor morphisms like this:

G@GAFBECD???????��a �� b

�������
��
c

H@GAFBECD?????��
g

�����������

�� d

��
e

��
f

= F@GAFBECD
???????????

��a

��b

��������

 c

�����������

�� d

��������

e

�� f

or equivalently, like this:

Gabceg H
gd
f = F abcdef

where the Einstein summation
convention says that any index
appearing once as a superscript and
once as a subscript — g in this ex-
ample — labels an ‘internal edge’.

In particle physics, edges of Feyn-
man diagrams are called particles.
Vertices are called interactions.
Internal edges are called virtual
particles.

28

Monads in Vect

In Vect, an adjunction turns out
to be a pair of dual vector spaces
V , V ∗ with the unit

TT
�� k

i
��

V ⊗ V ∗
and counit

��RR V ∗ ⊗ V
e
��

k
being the obvious maps. A monad
in Vect is an associative algebra.
Since an adjunction gives a monad,
a pair of dual vector spaces gives an
associative algebra: the matrix al-
gebra M = V ⊗ V ∗.

[[��

11111111111

��

FF

M ⊗M
m
��

M

29

A Monad in ∆

The category of finite ordinals, ∆,
is a strict monoidal category with
+ as its tensor product. 1 ∈ ∆
is a monad with multiplication and
unit:

1 + 1
m
��

1

0
i
��

1

People usually call a monad in a
strict monoidal category a monoid
object, so let’s do that! For exam-
ple: a monoid object in Vect is an
associative algebra.

∆ is special because it’s the free
monoidal category on a monoid
object! In other words...

30

Theorem: Given a strict monoidal
category C, there’s a 1-1 correspon-
dence between monoid objects in C
and functors

F : ∆→ C
that preserve tensor products. Each
such functor gives a monoid object
F (1) with multiplicationF (m) and
unit F (i).

This explains the special role of ∆
in our discussion of monads. A monad
M :A→ A is just a monoid object
in hom(A,A), so it gives us

F : ∆→ hom(A,A).

Similarly: a comonad C:B → B is
a monoid object in hom(B,B)op,
so we get

F : ∆op → hom(B,B).

31

Monoidal Categories

Alas, strict monoidal categories are
rare in nature. In general, a monoidal
category is:

• a category C
• a functor ⊗: C × C → C
• a unit object I ∈ C
• natural isomorphisms called the

associator:

ax,y,z: (x⊗y)⊗z → x⊗ (y⊗z)

left unitor:

`x: I ⊗ x→ x

and right unitor:

rx:x⊗ I → x

such that...

32

the following diagrams commute:

• the pentagon equation:

(w ⊗ x)⊗ (y ⊗ z)

w ⊗ (x⊗ (y ⊗ z))

w ⊗ ((x⊗ y)⊗ z)(w ⊗ (x⊗ y))⊗ z

((w ⊗ x)⊗ y)⊗ z

aw,x,y⊗z

''OOOOOOOOOOOOOOOOO

1⊗ax,y,z

NN�������������aw,x⊗y,z
//

aw,x,y⊗1

��
!!!!!!!!!!!!!

aw⊗x,y,z
77ooooooooooooooooo

• the triangle equation:

(x⊗ I)⊗ y ax,I,y
//

rx⊗I
$$IIIIIIIIIIIIIIIIIII

x⊗ (I ⊗ y)

1⊗`y
zzuuuuuuuuuuuuuuuuuuu

x⊗ y
Mac Lane’s coherence theorem says
these laws suffice to make all
diagrams built from ⊗, a, `, r com-
mute.

33

A functorF : C → D between monoidal
categories is monoidal if it is equipped
with:

• a natural isomorphism
Φx,y:F (x)⊗ F (y)→ F (x⊗ y)

• an isomorphism φ: I → F (I)

such that these diagrams commute:

• compatibility with unitors:

I ⊗ F (x) F (x)

F (I)⊗ F (x) F (I ⊗ x)

-
`F (x)

?

φ⊗1

-
ΦI,x

6

F (`x)

F (x)⊗ I F (x)

F (x)⊗ F (I) F (x⊗ I)

-
rF (x)

?

1⊗φ

-
Φx,I

6

F (rx)

34

• compatibility with the
associator:

(F (x)⊗ F (y))⊗ F (z) F (x)⊗ (F (y)⊗ F (z))

F (x⊗ y)⊗ F (z) F (x)⊗ F (y ⊗ z)

F ((x⊗ y)⊗ z) F (x⊗ (y ⊗ z))

?

Φx,y⊗1

-

aF (x),F (y),F (z)

?

1⊗Φy,z

?

Φx⊗y,z

?

Φx,y⊗z

-

F (ax,y,z)

Exercise: given a monoid object
M in C and a monoidal functor

F : C → D,
check that F (M) becomes a monoid
object in D.

35

PROs

A PRO is a monoidal category C
for which every object equals x⊗n
for some fixed object x ∈ C. Given
monoidal categories C and D, an
algebra of C in D is a monoidal
functor

F : C → D
If C is a PRO, this picks out an ob-
ject F (x) ∈ D and equips it with
algebraic structure.

For example, ∆ is a PRO since ev-
ery object is of the form 1+ · · ·+1.
∆ is called the PRO for monoids,
since an algebra of ∆ in D

F : ∆→ D
picks out F (1) ∈ D and equips it
with the structure of a monoid ob-
ject.

36

There’s a PRO for any untyped al-
gebraic structure with operations
of arbitrary source and target ar-
ity satisfying equational laws with
no duplication, deletion or per-
mutation of arguments. To elim-
inate the last restriction, we need
‘PROPs’. To eliminate all three,
we need ‘algebraic theories’:

AlgTh
� _

��

� � // FinProdCat� _

��

PROP� _

��

� � // SymmMonCat
� _

��

PRO � � // MonCat

Gadgets of the right-hand sort de-
scribe typed algebraic structures.

37

PROPs

There’s no PRO for commutative
monoids; to say ab = ba we need
to permute arguments. For this we
need PROPs, which are special sym-
metric monoidal categories.

A braided monoidal category
C is a monoidal category equipped
with a natural isomorphism called
the braiding:

Bx,y:x⊗ y → y ⊗ x
x y

making these diagrams commute...

38

• the hexagon equations:

x⊗ (y ⊗ z) (x⊗ y)⊗ z (y ⊗ x)⊗ z

(y ⊗ z)⊗ x y ⊗ (z ⊗ x) y ⊗ (x⊗ z)
?

Bx,y⊗z

-

a−1
x,y,z

-
Bx,y⊗z

?

ay,x,z

-

ay,z,x
-

y⊗Bx,z

(x⊗ y)⊗ z x⊗ (y ⊗ z) x⊗ (z ⊗ y)

z ⊗ (x⊗ y) (z ⊗ x)⊗ y (x⊗ z)⊗ y
?

Bx⊗y,z

-
ax,y,z

-
x⊗By,z

?

a−1
x,z,y

-

a−1
z,x,y

-

Bx,z⊗y

A symmetric monoidal category
is a braided monoidal category with
Bx,y = B−1

y,x:

x y
=

x y

For example: (Set,×), (Set,+), or
(Vect,⊗), but not ∆.

39

A functor F : C → D between
symmetric monoidal categories is
symmetric monoidal if it’s
monoidal and satisfies:

• compatibility with the
braiding:

F (x)⊗ F (y) F (y)⊗ F (x)

F (x⊗ y) F (y ⊗ x)

-
BF (x),F (y)

?

Φx,y

?

Φy,x

-
F (Bx,y)

A PROP is a symmetric monoidal
category C for which every object
equals x⊗n for some fixed object
x ∈ C. Given symmetric monoidal
categories C andD, an algebra of
C in D is a symmetric monoidal
functor

F : C → D
40

String Diagrams Revisited

We can reason in monoidal cate-
gories using 2-dimensional string di-
agrams. Similarly, we can reason in
braided monoidal categories using
3-dimensional string diagrams:

x y z

z y x
%%%%%%

=

x y z

z y x

We can reason in symmetric monoidal
categories using 4-dimensional (or
higher-dimensional) string diagrams,
since now:

x y
=

x y

Exercise: describe the PROP for
commutative monoids using string
diagrams.

41

Examples

The category FinSet of finite sets
and functions is a PROP with +
as its tensor product, since every
object equals 1 + · · · + 1. And
this is the PROP for commutative
monoids!

In other words, (FinSet,+) is the
free symmetric monoidal category
on a commutative monoid object,
just as ∆ is the free monoidal cat-
egory on a monoid object.

∆op is the PRO for comonoids,
since a monoidal functor F : ∆op →
D is the same as a monoid object in
Dop — which we call a comonoid
object inD. Similarly, (FinSetop,+)
is the PROP for cocommutative
comonoids.

42

In physics, it’s important that the
category of 2d cobordisms is the
PROP for commutative Frobenius
algebras:

i: I → x m:x⊗ x→ x e:x→ I ∆:x→ x⊗ x

Monoid laws:

= = =

Comonoid laws:

= = =

Frobenius laws: Commutativity:

= = =

43

Any semisimple commutative alge-
bra naturally gives rise to a com-
mutative Frobenius algebra satisfy-
ing this extra law:

=

Commutative Frobenius algebras of
this sort are called strongly separa-
ble. The PROP for these algebras
is the category of cospans of finite
sets:

X

f AAAAAAAA Y
g~~~~~~~~~

A
See Rosebrugh, Sabadini and Wal-
ters for a proof. For Frobenius al-
gebras in physics, see Lauda and
Pfeiffer. (Links on my webpage.)

44

Algebraic Theories

A category C has finite products
if it has:
• a terminal object 1, mean-
ing that for each x ∈ C there is
a unique morphism

x ! //___ 1

• for each pair of objects x, y a
binary product

x× y
πx
{{vvvvvvvvvv πy

##HHHHHHHHHH

x y

meaning that any pair of maps to
x and y factors uniquely through
x× y:

a

f

��~~~~~~~~~~~~~~~~~~~~~~

g

��
@@@@@@@@@@@@@@@@@@@@@@

!���
�
�

x× y
πx

wwoooooooooooooo

πy
''OOOOOOOOOOOOOO

x y

45

An algebraic theory is a cate-
gory with finite products such that
every object equals xn for some fixed
object x. Given categories with
finite products C and D, an
algebra of C in D is a product
preserving functor

F : C → D

Algebraic theories can be seen as
special PROPs, since any category
with finite products becomes a sym-
metric monoidal category if we take
⊗ to be × and I to be 1.

(There’s usually a choice of binary
products and terminal object, since
they’re only unique up to canoni-
cal isomorphism. But this is harm-
less.)

46

Theorem: A symmetric monoidal
category gives a category with
finite products with × = ⊗, 1 = I
iff there are monoidal natural trans-
formations

ex:x→ I

and
∆x:x→ x⊗ x

such that these commute:

x
1

��

∆x //x⊗ x
ex⊗1

��

x I ⊗ x`xoo

x
1

��

∆x //x⊗ x
1⊗ex��

x x⊗ Irxoo

So, a symmetric monoidal category
becomes a category with finite prod-
ucts when we can duplicate and
delete variables using

∆x:x→ x⊗ x, ex:x→ I

Exercise: Say this using string
diagrams.

47

Examples

There’s an algebraic theory for any
untyped algebraic structure with
operations of arbitrary (finite) ar-
ity satisfying equational laws. For
example:
• groups
• rings
• not fields!
• vector spaces over a given field k
• associative algebras over k

Using categories with finite prod-
ucts we can describe any typed al-
gebraic structure with operations
of arbitrary arity satisfying equa-
tional laws. For example:

• chain complexes of abelian groups
• ring/module pairs

48

New Versus Old

Lawvere invented algebraic theories
to streamline Birkhoff’s approach
to universal algebra where a
variety is a set of operations, e.g.:

· (binary) −1 (unary) 1 (nullary)

together with a set of purely
equational axioms, e.g.:

(g·h)·k = g·(h·k), 1·g = 1, g·1 = g,

g · g−1 = 1, g−1 · g = 1.

More generally, categories with
finite products C do the same job
as ‘typed varieties’. Given C we get
a typed variety with:

• one type per object of C
• one operation per morphism

• one axiom per equation between
morphisms

49

From this viewpoint, we can think
of PROPs as special algebraic theo-
ries where no variable appears twice
on the same side of any equation,
and the same variables appear on
both sides. For example,

(g · h) · k = g · (h · k)

is okay, but not

g · g = g

or
g · h = g.

In short: no duplication or dele-
tion of variables!

This is related to the fact that ‘we
cannot clone a quantum’, nor can
we ‘delete a quantum’: (Hilb,⊗)
is a symmetric monoidal category
where ⊗ is not the binary product
and 1 is not terminal.

50

Q: Viewed as lists of axioms, PROPs
are special algebraic theories. Viewed
as categories, algebraic theories are
special PROPs! What’s going on?

A: There’s a kind of ‘adjunction’:

PROP
L // AlgTh
R

oo

or more generally

SymmMonCat
L //

FinProdCat
R

oo

since

hom(LC,D) ' hom(C, RD)

in a ‘natural’ way. For example:
think of the PROP for monoids C
as a special algebraic theory LC,
and look at algebras of LC in some
category with finite products D.
These are the same as algebras of C
in the underlying symmetric monoidal
category RD of D!

51

In fact

L: SymmMonCat→ FinProdCat

and

R: FinProdCat→ SymmMonCat

are ‘2-functors’ between 2-categories,
and the ‘adjunction’ between them
is actually a ‘pseudo-adjunction’,
since we only have an equivalence
of categories

hom(LC,D) ' hom(C, RD)

instead of an isomorphism.

Instead of studying these general
concepts, let’s just study L and R.
They’re interesting because they go
between the ‘classical’ world of fi-
nite product categories (e.g. alge-
braic theories) and the ‘quantum’
world of symmetric monoidal cate-
gories (e.g. PROPs).

52

Q: What does

R: FinProdCat→ SymmMonCat

do when applied to an algebraic the-
ory like the theory of groups? What
sort of PROP do we get?

A: We get a PROP in which the di-
agonal and map to the unit object
have become explicit operations

∆:x→ x⊗ x, e:x→ I

For example, if D is the algebraic
theory for groups,RD is the PROP
for cocommutative Hopf al-
gebras. In here the axiom g·g−1 =
1 becomes:

x⊗ x x⊗ x

x x

I
e

&&MMMMMMMMMMMMMMMMMMMM

∆
EE���������

i

88qqqqqqqqqqqqqqqqqqqq

m
��

222222222

1⊗inv
//

53

Q: What does the ‘pseudo-monad’

SymmMonCat RL // SymmMonCat

do?

A: Given a symmetric monoidal cat-
egory C, M = RL throws in new
morphisms

∆x:x→ x⊗ x, ex:x→ I

satisfying the conditions that make
MC into a category with finite prod-
ucts. In other words, M gives C
the ability to duplicate and delete
information!

We will describe M in a beautiful
way using the ‘tensor product’ of
symmetric monoidal categories.

54

SymmMonCat is a 2-category with:

• symmetric monoidal categories as
objects

• symmetric monoidal functors as
morphisms

• ‘monoidal natural transformations’
as 2-morphisms

where a natural transformation

C • • D
F

""

G

<<

α
��

between monoidal functors is monoidal
if it gets along with tensor products
in the following way...

55

• compatibility with ⊗:

F (x)⊗ F (y) G(x)⊗G(y)

F (x⊗ y) G(x⊗ y)

-

αx⊗αy

?

Φx,y

?

Γx,y

-

αx⊗y

• compatibility with I :

I

F (I) G(I)

�
�
�
�
��	

φ
@
@
@
@
@@R

γ

-
αI

Here the isomorphisms

Φx,y:F (x)⊗ F (y)→ F (x⊗ y)

and
φ: I → F (I)

are part of the monoidal functor F ,
and similarly Γ and γ are part ofG.

56

So, given symmetric monoidal cat-
egories C and D, we get a category
hom(C,D) with:

• symmetric monoidal functors
F : C → D as objects

•monoidal natural transformations
α:F → G as morphisms

or in other words:

• algebras of C in D as objects

• algebra homomorphisms as
morphisms.

We call hom(C,D) the category
of algebras of C in D. For ex-
ample: if C is the PROP for monoids,
hom(C, (Set,×)) is the category of
monoids, while hom(C, (Vect,⊗))
is the category of associative alge-
bras.

57

Given symmetric monoidal categories
C and D, hom(C,D) is always a
symmetric monoidal category in
a natural way! E.g. we can define
the tensor product of monoids, and
also of associative algebras.

Even better, given symmetric monoidal
categories C and D, there’s a sym-
metric monoidal category C ⊗ D
such that:

hom(C⊗D, E) ' hom(C, hom(D, E))

For example, if C is the PROP for
monoids, Cop is that for comonoids,
and C⊗Cop is that for ‘bimonoids’.
A bimonoid is both a monoid and
a comonoid, with all the comonoid
operations being monoid homomor-
phisms (and vice versa).

58

Now, back to our pseudo-monad

SymmMonCat M // SymmMonCat

which takes any symmetric monoidal
category and endows it with finite
products. In a category with finite
products, every object is automat-
ically a cocommutative comonoid,
thanks to

∆x:x→ x× x
and

ex:x→ 1

And indeed....

Theorem:

MC ' C ⊗ (FinSetop,+)

where (FinSetop,+) is the PROP
for cocommutative comonoids.

59

Philosophical Postlude

Why do algebraic theories so nicely
describe a structured object in a
classical world, and PROPs a struc-
tured object in a quantum world?

In our world, physical objects act
approximately like point particles.
As time passes, they trace out 1d
paths in 4d spacetime: precisely the
string diagrams we use to reason
in symmetric monoidal categories!
So, it’s not surprising that symmet-
ric monoidal categories seem like
a comfortable context for mathe-
matical objects.

But why are 1d paths in 4d space-
time related to symmetric monoidal
categories? The full explanation
involves n-categories....

60

A symmetric monoidal category is
the same as a 4-category with one
j-morphism for j < 3:

THE PERIODIC TABLE
n = 0 n = 1 n = 2

k = 0 sets categories 2-categories

k = 1 monoids monoidal monoidal

categories 2-categories

k = 2 commutative braided braided
monoids monoidal monoidal

categories 2-categories

k = 3 ‘’ symmetric sylleptic

monoidal monoidal
categories 2-categories

k = 4 ‘’ ‘’ symmetric
monoidal

2-categories

k = 5 ‘’ ‘’ ‘’

k = 6 ‘’ ‘’ ‘’

k-tuply monoidal n-categories:
(n + k)-categories with only one

j-morphism for j < k

61

1d tangles in codimension 1 are the
morphisms of a monoidal category
1Tang1:

•x •x∗ •x

•x

��
LL

��

This is the free monoidal category
with duals on one object.

1d tangles in codimension 2 form a
braided monoidal category 1Tang2:

•x •
x∗ •x

•x ����������
��

7777[[
�������

�������

�������

This is the free braided monoidal
category with duals on one object.

1d tangles in codimension 3 form
1Tang3, the free symmetric monoidal
category with duals on one object.

62

In general we expect nTangk to be
the free k-tuply monoidal n-category
with duals on one object:

THE TANGLE HYPOTHESIS

k = 0

k = 1

k = 2

k = 3

k = 4

n = 0 n = 1 n = 2

•x
•x∗ •

x

•
x �����������

��
7777

[[

�������

�������

�������

•x •x
∗
•x

•
x

��
LL

��

�������

�������

�������

4d

•x •x
∗

•x

•x •x∗ •
x

•
x

��

�������

�������

�������

��
��OO

4d

•x •x∗ •
x

•
x

��

�������

�������

�������

��
��OO

5d

•x
∗
•
x

•
x

•x
∗

•x •x∗

•x

�������

�������

�������

•x •x∗

•x

�������

�������

�������

4d

•x

•x

��

•x x

•
x

•
x

//

//

��

•
x∗

•
x

•
x∗

•
x

•x•x
∗

••

zz

==

rrrr
99

vvvvvvvv
zz

�������

�������

�������

�����

�������

�������

�������

5d

�����

�������

�������

�������

6d

63

In short: since we perceive a uni-
verse of codimension 3 objects in
dimension 4, our ‘universal algebra’
uses 3-tuply monoidal 4-categories.

An extra simplification in classical
— i.e., non-quantum — logic is that
we can duplicate and delete infor-
mation. This is not really true in
the physical world, but our copy-
ing machines and wastebaskets do
a pretty good job of creating this
impression, so mathematicians like
symmetric monoidal categories where
this holds. These are categories
with finite products, the archety-
pal example being Set.

But, to get closer to reality we should
climb the n-categorical ladder, and
learn to love the quantum universe.

64

References

For more details, try these online references:

John Baez, Quantum quandaries: a category-theoretic
perspective,

http://math.ucr.edu/home/baez/quantum/

John Baez and James Dolan, Higher-dimensional algebra
and topological quantum field theory, q-alg/9503002

John Baez and James Dolan, Categorification, math.QA/9802029

Michael Barr and Charles Wells, Toposes, Triples and
Theories,

http://www.cwru.edu/artsci/math/wells/pub/ttt.html

Stanley Burris and H.P. Sankappanavar, A Course in
Universal Algebra,

http://www.math.uwaterloo.ca/ snburris/htdocs/ualg.html

Aaron Lauda, Frobenius algebras and ambidextrous ad-
junctions, math.CT/0502550

Aaron Lauda and Hendryk Pfeiffer, Open-closed strings:

two-dimensional extended TQFTs and Frobenius alge-
bras, math.AT/0510664

F. William Lawvere, Functorial Semantics of Algebraic
Theories,

http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html

Robert Rosebrugh, Nicoletta Sabadini and Robert Wal-
ters, Generic commutative separable algebras and cospans

of graphs,
http://www.tac.mta.ca/tac/volumes/15/6/15-06abs.html

Todd Trimble, Bar constructions,

http://math.ucr.edu/home/baez/universal/bar.html

65

http://math.ucr.edu/home/baez/quantum/
http://arxiv.org/abs/q-alg/9503002
http://arxiv.org/abs/math.QA/9802029
http://www.cwru.edu/artsci/math/wells/pub/ttt.html
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
http://arxiv.org/abs/math.CT/0502550
http://arxiv.org/abs/math.AT/0510664
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
http://www.tac.mta.ca/tac/volumes/15/6/15-06abs.html
http://math.ucr.edu/home/baez/universal/bar.html

