
YOUNG DIAGRAMS AND SCHUR FUNCTORS

JOHN C. BAEZ

May 19, 2019

The natural numbers N are the free commutative monoid on one generator. Sup-
pose someone told you to create something even cooler than the natural numbers.
This would be a tall order, but here’s a simple-minded thing you could try: the free
commutative monoid on the set of natural numbers! This would be a commutative
monoid with elements like 1⊕ 3⊕ 5⊕ 1: that is, formal sums of natural numbers,
not to be confused with ordinary sums.

Since these formal sums are commutative, we can always order their summands in
increasing order, or—as is traditionally done—in decreasing order, like 5⊕3⊕1⊕1.
Such a thing can be drawn as a ‘Young diagram’: in this case, a bunch of boxes
with 5 boxes in the first row, 3 in the second row, 1 in the third row and 1 in the
fourth:

The definition I just gave allows Young diagrams with no boxes in certain rows, but
so far people don’t think about these (a bit like how some people don’t recognize
zero as a natural number). So, the usual definition goes like this:

Definition 1. A Young diagram is a finite sequence of natural numbers n1 ≥
n2 ≥ · · · ≥ nk > 0. We call k the number of rows in the Young diagram, n1 the
number of columns, and n =

∑
i ni the number of boxes in the Young diagram.

Young diagrams are not as important as natural numbers, obviously, but they
really are quite ubiquitous. They classify lots of things. For example:

(1) Young diagrams with n boxes classify partitions of n-element sets up to
isomorphism.

(2) Young diagram with n boxes classify conjugacy classes in Sn.
(3) Young diagrams with n boxes classify irreps of Sn up to isomorphism.
(4) Young diagrams with at most k rows classify polynomial irreps of GL(k,C),

the group of all linear transformations of Ck, up to isomorphism.
(5) Young diagrams with at most k − 1 rows classify irreps of SL(k,C) =
{g ∈ GL(k,C) : det(g) = 1} up to isomorphism.

Department of Mathematics, University of California, Riverside CA, 92521, USA.

Centre for Quantum Technologies, National University of Singapore, 117543,

Singapore.
E-mail address: baez@math.ucr.edu.

Date: May 19, 2019.

1



2 BAEZ

(6) Young diagrams with at most k − 1 rows classify irreps of SU(k) =
{g ∈ SL(k,C) : g is unitary} up to isomorphism.

Item (1) is obvious. First, any partition of an n-element set will have blocks
with sizes given by some list of natural numbers n1 ≥ · · · ≥ nk > 0. Second, these
classify the partition up to isomorphism. That is, two partitions of two n-element
sets have the same list of block sizes if and only if they are related by some bijection
between those sets.

Item (2) is also quite easy. A permutation of an n-element set is made up of
a bunch of cycles, which give a partition of that set, and thus a Young diagram.
Two permutations lie in the same conjugacy class if and only if they give the same
Young diagram.

Item (3) is a bit deeper. Here the symmetric group Sn is the group of per-
mutations of the n-element set {1, . . . , n}. A representation of a group G is a
homomorphism ρ : G → GL(V ) where GL(V ) is the group of all invertible linear
transformations of some vector space V . We call ρ a representation of G on V .
A representation is irreducible if V contains no subspaces that are mapped to
themselves by all transformations ρ(g), except for {0} and V itself. We call a
representation a rep for short, and an irreducible representation an irrep.

There’s a fairly obvious concept of isomorphism for representations, and also
a way to take direct sums of representations. For the groups in items (4)–(6),
every finite-dimensional rep is isomorphic to a direct sum of irreps. So, for these
groups, the project of classifying representations (up to isomorphism) boils down to
classifying irreps. Irreps are like the ’atoms’ of group representation theory; from
these atoms we can build bigger molecules, but we should start by understanding
the atoms.

Why should irreps of Sn correspond to Young diagrams with n boxes? For this
it helps to know a bit of character theory. Suppose G is a finite group. Any repre-
sentation ρ : G → GL(V ) on a finite-dimensional vector space V has a character
χρ : G→ C given by χρ(g) = tr(ρ(g)). This is a class function, meaning that it’s
constant on each conjugacy class of G, or in other words,

χρ(hgh
−1) = χρ(g)

for all g, h ∈ G. There are a couple of great theorems in group representation
theory that explain why characters are so important.

Theorem 2. Two finite-dimensional representations of G are isomorphic iff they
have the same character.

Theorem 3. Characters of irreducible representations of G form a basis of the
vector space of class functions on G.

As a result, we get:

Corollary 4. For any finite group G, the number of conjugacy classes of G equals
the number of isomorphism classes of irreps of G.

In modern mathematics, we like ‘bijective proofs’. That is, if two sets have the
same cardinality, we like to find an explicit bijection between them. Of course
there exists a bijection between the set of conjugacy classes of G and the set of
isomorphism classes of irreps of G, because they have the same cardinality. But is
there ‘natural’ bijection between these things?



YOUNG DIAGRAMS AND SCHUR FUNCTORS 3

It’s actually hard to make this question precise: what does ‘natural’ mean here?
We usually make naturality precise using the concept of natural isomorphism be-
tween functors, but it’s hard to figure out what functors to talk about in this
particular case.

Still, one can ask if there’s a bijection between conjugacy classes and irreps
that seems ‘natural’ in some intuitive sense: one that can be constructed by some
systematic recipe. It seems the answer is no in general: at least nobody has found
one that works for all finite groups. But the answer is yes for the groups Sn. There
is systematic recipe to get an irrep of Sn from an n-box Young diagram. I won’t
describe this recipe: this is one of the main things you’d typically learn in a course
on Young diagrams, or representations of Sn. Instead, I’ll just give some examples.
The Young diagram

gives the ‘trivial rep’ of S3. This is representation ρ : S3 → GL(1,C) with ρ(g) = 1.
The Young diagram

gives the ‘sign rep’ ρ : Sn → GL(2,C), with ρ(σ) = sgn(σ).
Both these examples easily generalize to any dimension: the Young diagram

with n boxes and just one row gives the trivial rep of Sn, while the diagram with
n boxes and just one column gives the sign representation. A more interesting
representation of S3 comes from this, the only other Young diagram with 3 boxes:

The gives a 2d irrep of S3, ρ : S3 → GL(2,C), which actually maps S3 to GL(2,R).
To get this representation, just think of S3 as the symmetries of an equilateral
triangle centered at the origin of the plane, and extend these symmetries to linear
transformations of the plane.

Item (4) is even deeper. Why should Young diagrams give polynomial represen-
tations of GL(k,C)? The basic idea is this. There is an obvious representation of
GL(k,C) on Ck. This is a polynomial irrep. All other polynomial irreps of GL(k,C)
can be built from this one using Young diagrams!

How? First, for any finite group G there’s an algebra C[G] called the group
algebra of G. This is the vector space with G as its basis, with multiplication
defined on basis elements to be multiplication in G. Any representation ρ : G →
GL(V ) makes V into a C[G]-module. In fact V become both a left C[G]-module,
as follows:

gv = ρ(g)v

and also a right C[G]-module, as follows:

vg = ρ(g−1)v.

Next, by item (3) any Young diagram with n boxes gives a representation of Sn,
say ρ : Sn → GL(R) for some vector space R. For any vector space V , there is also
a representation of Sn on the n-fold tensor product

V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n factors

,



4 BAEZ

where a permutation acts by permuting the factors.
So, R becomes a right C[G]-module and V ⊗n becomes a left C[G]-module. We

can tensor these and get a vector space

R⊗C[Sn] V
⊗n.

But because GL(V ) has a representation on V , it gets a representation on this
vector space.

Taking V = Ck, this how a Young diagram gives a representation of GL(k,C).
It’s easy to check that this is a polynomial representation. Less obviously, it’s an
irrep of GL(k,C). Even less obviously, we get all polynomial irreps of GL(k,C),
up to isomorphism, this way. And still less obviously, this construction gives a one-
to-one correspondence between Young diagrams with at most k rows polynomial
irreps of GL(k,C).

There is a lot more to say about this, obviously. But the key to understanding
these matters at a deeper level is to create a category that has Young diagrams as
objects. More precisely, we’ll find a category Schur where every object is a direct
sum of objects coming from Young diagrams. Objects of this category will act to
give functors from Vect to itself, called Schur functors. I won’t prove it here, but if
we apply these functors to Ck we get all the representations of GL(k,C). In fact,
we get them all from Young diagrams with at most k rows. Items (5) and (6) work
similarly, but for these smaller groups we only need Young diagrams with at most
k − 1 rows.

The first step is to stop thinking of the Sn’s separately and define the permu-
tation groupoid to be

S = S0 + S1 + S2 + Sn + · · · .

The sum here stands for the ‘disjoint union’ or technically ‘coproduct’ of the groups
Sn. A groupoid is a category with all morphisms invertible. A group gives a
groupoid with one object: the group elements are the morphisms from this object
to itself. The disjoint union of a bunch of groups is a groupoid! The groupoid S has
one object for each natural number n, all the morphisms are endomorphisms, and
the morphisms σ : n → n are elements of Sn. This is a very important groupoid,
because it’s equivalent to the groupoid of finite sets and bijections.

We can define a representation of a groupoid X to be a functor R : X → Vect.
When our groupoid has one object this reduces to a representation of a group. But
a representation R : S → Vect sends each object n to a vector space R(n), and each
morphism σ : n → n to a linear map R(σ) ∈ GL(R(n)) in a way that preserves
composition and identities. So, a representation R : S → Vect is just a list of reps
of all the groups Sn.

For what we’ll do next it’s nice to impose some ‘finiteness’ conditions. So, we’ll
say that a polynomial representation R : S → Vect is one with dimR(n) <∞ for
all n and dimR(n) = 0 except for finitely many n. There’s a category Schur of these
polynomial representations of S, where the morphisms are natural transformations.
Every object of Schur is a direct sum of finitely many functors coming from Young
diagrams.



YOUNG DIAGRAMS AND SCHUR FUNCTORS 5

We call Schur the category of Schur functors, for the following reason. Given
any vector space V , and R ∈ Schur, we get a new vector space

R̃(V ) =

∞⊕
n=0

R(n)⊗C[Sn] V
⊗n.

As before, the group Sn has a a representation on R(n) but also on V ⊗n, where it
acts by permuting the factors. Thus, R(n) becomes a right C[Sn]-module and V ⊗n

becomes a left C[Sn]-module. This lets us define the vector space R(n)⊗C[Sn] V
⊗n.

Notice that the above equation looks a lot like a Taylor series

f(x) =

∞∑
n=0

anx
n

n!
.

The variable x was a number, but its analogue V is a vector space! The coefficients
an were numbers too, but the coefficients R(n) are representations of Sn. The
process of dividing by n! has been replaced by tensoring over the group algebra
C[Sn]. Finally, the sum has been replaced by a direct sum. So, the definition of

the Schur functor R̃ categorifies the concept of a Taylor series.

Indeed, any representation R : S → Vect gives a functor R̃ : Vect→ Vect via the
above formula. But a polynomial representation R is a bit better: it also gives a

functor R̃ : FinVect → FinVect, where FinVect is the category of finite-dimensional
vector spaces. We use the same formula:

(1) R̃(V ) =

∞⊕
n=0

R(n)⊗C[Sn] V
⊗n

but now we note that each summand is finite-dimensional, and only finitely many
are nonzero.

So, being a bit more careful to distinguish these functors, given any R ∈ Schur
we get a functor

R̃Vect : Vect→ Vect

but also a functor

R̃FinVect : FinVect→ FinVect.

We call both these functors Schur functors, since they are defined by the same
formula.

In fact, Schur functors know how to act on any category C that has enough
structure for Equation (1) to make sense! For example, the formula works fine
whenever C = Rep(G) is the category of representations of some group G, so for
any R ∈ Schur we get a functor

R̃Rep(G) : Rep(G)→ Rep(G).

If we take G = GL(k,C), and apply all these functors to the obvious representation
of GL(k,C) on Ck, we get all polynomial representations of GL(k,C). In fact, as
mentioned, the objects R ∈ Schur coming from Young diagrams with at most k
rows give precisely the polynomial irreps of GL(k,C). Similar remarks hold for
items (5) and (6).

Schur functors know how to act on a category C whenever this category is:

• symmetric monoidal,



6 BAEZ

• C-linear (meaning the hom-sets are complex vector spaces, with composi-
tion and the tensor product of morphisms being linear in each argument),
and
• Cauchy complete, meaning:

– it has direct sums (or in more categorical terms, biproducts)
– it has kernels of idempotents (that is, morphisms ρ : x→ x with p2 =
p).

Any abelian category is Cauchy complete, but the generalization to Cauchy com-
plete categories is useful: for example, the category of vector bundles on a manifold
doesn’t have kernels of arbitrary morphisms, but it does have kernels of idempo-
tents. There are also deeper theoretical reasons for being interested in Cauchy
complete C-linear functors: for starters, any C-linear functor automatically pre-
serves biproducts and kernels of idempotents.

Todd Trimble and I proved a theorem that says roughly this:

Theorem. Schur functors are precisely the functors that know how to act on all
Cauchy complete symmetric monoidal C-linear categories.

When we say that a Schur functor ‘knows how to act’ on every Cauchy complete
symmetric monoidal C-linear category C, we mean more than merely that each
R ∈ Schur gives a functor

R̃C : C → C

for each such C. We also mean that given a suitable map between such categories,
say f : C → D, we get a square

C C

D D

R̃C

f f

R̃D

that commutes up to a natural isomorphism R̃f . If the square commuted, we would

say R̃ is a natural transformation from U to itself, where

U : SymmMonCauch→ Cat

maps any Cauchy complete symmetric monoidal C-linear category to its underlying
category. Since it commutes only up to a natural isomorphism, the most we can

hope for is that R̃ is a ‘pseudonatural’ transformation. This is a 2-categorical
analogue of a natural transformation, to be expected here because Cat is not just
a category but a 2-category. There is also a 2-category SymMonCauch, with:

• Cauchy complete symmetric monoidal C-linear categories as objects,
• symmetric monoidal C-linear functors as morphisms,
• monoidal natural transformations as 2-morphisms.

There is a 2-functor

U : SymmMonCauch→ Cat

mapping any Cauchy complete symmetric monoidal C-linear category to its under-
lying category. Each object R ∈ Schur gives a pseudonatural transformation from
U to itself.



YOUNG DIAGRAMS AND SCHUR FUNCTORS 7

In the world of 2-categories we have not only 2-functors and pseudonatural trans-
formations between these, but ‘modifications’ between pseudonatural transforma-
tions. All these are involved in the precise statement of the theorem:

Theorem 5. Schur is equivalent to the category with

• pseudonatural transformations α : U ⇒ U as objects,
• modifications between these as morphisms.

Since Young diagrams correspond precisely to the objects of Schur that aren’t
direct sums of other objects in a nontrivial way, this result gives yet another sort
of entity classified by Young diagrams. For the proof see:

• John Baez and Todd Trimble, Schur Functors I.

Acknowledgements. I thank the mathematics graduate students of U. C. River-
side for organizing Math Connections 2019, at which I presented this talk. I espe-
cially thank Joe Moeller for taking the notes on which this writeup is based.

https://ncatlab.org/johnbaez/show/Schur+functors+I
http://math.ucr.edu/~mathconn/

