A Categorification of the Hecke Algebra

Alexander E. Hoffnung

Joint with John Baez and James Dolan
2009 Fall Western Sectional Meeting
Department of Mathematics, University of California, Riverside

Nov. 7, 2009
Outline

1. The idea
2. Enriched bicategory theory
3. The theorem
4. Hecke algebras
5. The categorified Hecke algebra and incidence geometries
The category of permutation representations

Given a finite group G there is a category $\text{PermRep}(G)$ consisting of:

- objects: permutation representations of finite groups – in other words, actions of G on finite sets;
- morphisms: intertwining operators.

Our goal is to categorify $\text{PermRep}(G)$.
Given a finite group G there is a category $\text{PermRep}(G)$ consisting of:

- objects: permutation representations of finite groups – in other words, actions of G on finite sets;
- morphisms: intertwining operators.

Our goal is to categorify $\text{PermRep}(G)$.
Degroupoidification and monoidal bicategories

Thinking back half an hour or so, recall the functorial process, *degroupoidification*:

- Groupoids \mapsto Vector spaces
- Spans of groupoids \mapsto Linear maps
- Maps of spans \mapsto Identity 2-morphisms.

And a span (or correspondence) is just a pair of maps with common domain:

\[\begin{array}{c} S \\ X \\
\end{array} \quad \begin{array}{c} \Downarrow \\ Y \end{array} \]
Degroupoidification and monoidal bicategories

Thinking back half an hour or so, recall the functorial process, *degroupoidification*:

- Groupoids \mapsto Vector spaces
- Spans of groupoids \mapsto Linear maps
- Maps of spans \mapsto Identity 2-morphisms.

And a span (or correspondence) is just a pair of maps with common domain:

\[
\begin{array}{c}
S \\
\downarrow \\
X & \rightarrow & Y
\end{array}
\]
Thinking back half an hour or so, recall the functorial process, *degroupoidification*:

- Groupoids \mapsto Vector spaces
- Spans of groupoids \mapsto Linear maps
- Maps of spans \mapsto Identity 2-morphisms.

And a span (or correspondence) is just a pair of maps with common domain:

\[
\begin{array}{c}
S \\
\downarrow \\
X & \rightarrow & Y
\end{array}
\]
Outline

1. The idea
2. Enriched bicategory theory
3. The theorem
4. Hecke algebras
5. The categorified Hecke algebra and incidence geometries
Some of the structure

Let \mathcal{V} be a monoidal bicategory. A \mathcal{V}-bicategory \mathcal{B} consists of:

- A set of objects a, b, c, \ldots;
- for every pair of objects a, b, a hom-object $\text{hom}(a, b) \in \mathcal{V}$;
- for each triple of objects $a, b, c \in \mathcal{B}$, a morphism in \mathcal{V} called composition

$$c = c_{abc} : \text{hom}(b, c) \otimes \text{hom}(a, b) \rightarrow \text{hom}(a, c)$$

- and an identity-assigning morphism in \mathcal{V};
Some of the structure

Let \mathcal{V} be a monoidal bicategory. A \mathcal{V}-bicategory \mathcal{B} consists of:

- A set of objects a, b, c, \ldots;
- for every pair of objects a, b, a hom-object $\text{hom}(a, b) \in \mathcal{V}$;
- for each triple of objects $a, b, c \in \mathcal{B}$, a morphism in \mathcal{V} called composition

$$c = c_{abc} : \text{hom}(b, c) \otimes \text{hom}(a, b) \to \text{hom}(a, c)$$

- and an identity-assigning morphism in \mathcal{V};
an invertible 2-morphism in \(\mathcal{V} \) called the **associator**

\[
((c,d) \otimes (b,c)) \otimes (a,b) \xrightarrow{a} (c,d) \otimes ((b,c) \otimes (a,b))
\]

\[
\begin{array}{ccc}
(c \otimes 1) & & (1 \otimes c) \\
\downarrow & \alpha_{abcd} & \downarrow \\
(b,d) \otimes (a,b) & & (c,d) \otimes (a,c) \\
\downarrow c & & \downarrow c \\
(a,d) & & (c,d) \otimes (a,c)
\end{array}
\]

for each quadruple of objects \(a, b, c, d \in \mathcal{B} \) and some **unitor** 2-morphisms;
One of the axioms

\[
\begin{align*}
(d,e)((c,d)((b,c)(a,b))) &= ((d,e)(c,d))(a,c) \\
((d,e)(c,d))((b,c)(a,b)) &= ((d,e)(c,d))(a,c) \\
(c,e)((b,c)(a,b)) &= 1 \\
(c,d) &= 1 \\
(b,c) &= 1 \\
(a,b) &= 1
\end{align*}
\]
Theorem

Given a monoidal functor \(f : \mathcal{V} \to \mathcal{V}' \) and a \(\mathcal{V} \)-enriched bicategory \(\mathcal{B} \), there exists a \(\mathcal{V}' \)-enriched bicategory \(\bar{f}(\mathcal{B}) \).

We have such a monoidal functor:

\[
\mathbf{D} : \text{FinSpan} \to \text{FinVec},
\]

where \(\text{FinSpan} \) is the monoidal bicategory of spans of finite groupoids.
The idea

Enriched bicategory theory

The theorem

Hecke algebras

The categorified Hecke algebra and incidence geometries

Change of base

Theorem

Given a monoidal functor \(f : \mathcal{V} \rightarrow \mathcal{V}' \) and a \(\mathcal{V} \)-enriched bicategory \(\mathcal{B} \), there exists a \(\mathcal{V}' \)-enriched bicategory \(\tilde{f}(\mathcal{B}) \).

We have such a monoidal functor:

\[
\mathbf{D} : \text{FinSpan} \rightarrow \text{FinVect},
\]

where \(\text{FinSpan} \) is the monoidal bicategory of spans of finite groupoids.
Outline

1. The idea
2. Enriched bicategory theory
3. The theorem
4. Hecke algebras
5. The categorified Hecke algebra and incidence geometries
The action groupoid

Given a G-set S, i.e. a set with an action of G, we can form the **action groupoid** $S//G$ with:

- Objects: elements $s \in S$;
- Morphisms: $(g, s) : s \to gs$.
Given a G-set S, i.e. a set with an action of G, we can form the **action groupoid** $S//G$ with:

- **Objects:** elements $s \in S$;
- **Morphisms:** $(g, s): s \to gs$.
The action groupoid

Given a G-set S, i.e. a set with an action of G, we can form the action groupoid $S//G$ with:

- **Objects**: elements $s \in S$;
- **Morphisms**: $(g, s): s \rightarrow gs$.
The Hecke bicategory

Given a finite group G, there is an enriched bicategory $\text{Hecke}(G)$ consisting of:

- objects: finite G-sets;
- for each pair of finite G-sets A, B, a groupoid of morphisms
 \[\text{hom}(A, B) = (A \times B) \bowtie G \]
- a composition map which is a span of groupoids;
- etc.,

Lemma

That is, $\text{Hecke}(G)$ is enriched over the monoidal bicategory of spans of groupoids, FinSpan.
The Hecke bicategory

Given a finite group G, there is an enriched bicategory $\text{Hecke}(G)$ consisting of:

- objects: finite G-sets;
- for each pair of finite G-sets A, B, a groupoid of morphisms
 \[\text{hom}(A, B) = (A \times B) \rightrightarrows G \]
- a composition map which is a span of groupoids;
- etc., . . .

Lemma

That is, $\text{Hecke}(G)$ is enriched over the monoidal bicategory of spans of groupoids, FinSpan.
From our change of base theorem and the degroupoidification functor, we have a \(\text{Vect} \)-enriched bicategory (really just a category)

\[
\bar{D}(\text{Hecke}(G))
\]

\[\bar{D}(\text{Hecke}(G)) \cong \text{PermRep}(G)\]

(as enriched bicategories)
The fundamental theorem

From our change of base theorem and the degroupoidification functor, we have a Vect-enriched bicategory (really just a category)

$$\tilde{D}(\text{Hecke}(G))$$

Theorem

$$\tilde{D}(\text{Hecke}(G)) \cong \text{PermRep}(G)$$

(as enriched bicategories)
Outline

1. The idea
2. Enriched bicategory theory
3. The theorem
4. Hecke algebras
5. The categorified Hecke algebra and incidence geometries
Hecke algebras are permutation representations

- This fundamental theorem is in effect a theorem about categorified Hecke algebras.
- This is because the Hecke algebra is the endomorphism ring of the representation V of a simple algebraic group $G = \text{SL}(n, \mathbb{F}_q)$ induced from the trivial representation of the Borel subgroup of upper triangular matrices.
Hecke algebras: generators and relations

Let S be the set of vertices of a Dynkin diagram D. Denote an edge between s and t in S by st and the label on st by m_{st}.

Definition

Let D be a Dynkin diagram and q a nonzero complex number. The **Hecke algebra** corresponding to this data is the associative $\mathbb{Z}[q, q^{-1}]$-algebra with generators σ_s, for each $s \in S$, and relations:

$$\sigma_s\sigma_t\sigma_s \ldots = \sigma_t\sigma_s\sigma_t \ldots$$

where each side has m_{st} factors, and

$$\sigma_s^2 = (q - 1)\sigma_s + q$$

for all $s \in S$.
Outline

1. The idea
2. Enriched bicategory theory
3. The theorem
4. Hecke algebras
5. The categorified Hecke algebra and incidence geometries
Consider the Dynkin diagram A_2:

$$\bullet \quad \longrightarrow \quad \bullet$$

We fix a prime power q. We have $G = SL(3, \mathbb{F}_q)$ and B is the upper triangular matrices. $X = G/B$ is the set of complete flags in \mathbb{F}_q^3, i.e.,

$$\{ V_1 \subset V_2 \}$$

and

$$\text{dim} V_i = i.$$
Consider the Dynkin diagram A_2:

$$
\bullet \quad \longrightarrow \quad \bullet
$$

We fix a prime power q. We have $G = SL(3, \mathbb{F}_q)$ and B is the upper triangular matrices.

$X = G/B$ is the set of complete flags in \mathbb{F}_q^3, i.e.,

$$\{ V_1 \subset V_2 \}$$

and

$$dim V_i = i.$$
Consider the Dynkin diagram A_2:

\begin{center}
\begin{tikzpicture}
\node (A) at (0,0) [fill] {};
\node (B) at (1,0) [fill] {};
\node (C) at (2,0) [fill] {};
\node (D) at (3,0) [fill] {};
\draw (A) -- (B);
\end{tikzpicture}
\end{center}

We fix a prime power q. We have $G = SL(3, \mathbb{F}_q)$ and B is the upper triangular matrices. $X = G/B$ is the set of complete flags in \mathbb{F}_q^3, i.e.,

\[\{ V_1 \subseteq V_2 \} \]

and

\[\dim V_i = i. \]
Projective perspective

In the projective space $\mathbb{F}_q P^2$, the flags are just a chosen point lying on a chosen line. The vertices of our Dynkin diagram represent “figures” and the edges represent “incidence relations”.

These figures should be thought of as generators of the categorified Hecke algebra.
Projective perspective

In the projective space $\mathbb{F}_q P^2$, the flags are just a chosen point lying on a chosen line. The vertices of our Dynkin diagram represent “figures” and the edges represent “incidence relations”.

\[
\bullet \quad \longrightarrow \quad \bullet
\]

point \quad ---- \quad line

These figures should be thought of as generators of the categorified Hecke algebra.
The Coxeter group

The Coxeter group S_3 controls the structure of $(X \times X)//G$. For A_2 there are two generators:

![Diagram](image)

The elements of S_3 correspond to the possible incidence relations between pairs of flags. The multiplication in the categorified Hecke algebra is a deformed version of this multiplication.

$$P^2 = (q - 1)P + q1$$
$$L^2 = (q - 1)L + q1$$
The Coxeter group

The Coxeter group S_3 controls the structure of $(X \times X)//G$. For A_2 there are two generators:

\[
P^2 = (q - 1)P + q1 \quad L^2 = (q - 1)L + q1
\]

The elements of S_3 correspond to the possible incidence relations between pairs of flags.

The multiplication in the categorified Hecke algebra is a deformed version of this multiplication.
The Coxeter group

The Coxeter group S_3 controls the structure of $(X \times X) // G$. For A_2 there are two generators:

The elements of S_3 correspond to the possible incidence relations between pairs of flags. The multiplication in the categorified Hecke algebra is a deformed version of this multiplication.

$$P^2 = (q - 1)P + q1 \quad L^2 = (q - 1)L + q1$$
The Coxeter group

The Coxeter group S_3 controls the structure of $(X \times X)//G$. For A_2 there are two generators:

The elements of S_3 correspond to the possible incidence relations between pairs of flags.

The multiplication in the categorified Hecke algebra is a deformed version of this multiplication.

\[P^2 = (q - 1)P + q1 \quad L^2 = (q - 1)L + q1 \]
The flag variety:

The Coxeter group – the apartments – shows up in four ways.
The idea
Enriched bicategory theory
The theorem
Hecke algebras

The categorified Hecke algebra and incidence geometries
The Bowtie

A Categorification of the Hecke Algebra
The idea
Enriched bicategory theory
The theorem
Hecke algebras

The categorified Hecke algebra and incidence geometries

The Cow
English nursery rhymes
The fourth apartment – the untold story
The idea
Enriched bicategory theory
The theorem
Hecke algebras
The categorified Hecke algebra and incidence geometries

The Coffin
For each pair of flags ...
For each pair of flags there is a unique apartment, i.e. a unique element of S_3.
This type of thinking leads one to find Yang-Baxter isomorphisms (these are isomorphisms of spans of sets over the flag variety) which are solutions to the Zamolodchikov tetrahedron equation.