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Discontinuous Galerkin (DG) Method

Advantages of the Discontinuous Galerkin (DG) Method

Discontinuous Galerkin (DG) methods are a class of finite
element methods using completely discontinuous piecewise
polynomial spaces as the basis
DG methods are high-order schemes, which allow for a coarse
spatial mesh to achieve the same accuracy,
DG methods achieve local conservativity, easily handle
complicated geometries and boundary conditions
Allow flexibility for h-p adaptivity, efficient parallel
implementation, easy coordination with finite volume
techniques
DG methods have attracted attention for high performance
computing due to high computational intensity and less data
communication
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DG Method for Burgers’ Equation

Suppose we wish to solve the following IBVP
ut +

(
u2

2

)
x

= 0 (x, t) ∈ (0, L)× (0, T )

u(x, 0) = u0(x) (x, t) ∈ (0, L)× {0}
u(0, t) = u(L, t)

Partition spatial interval (a, b) with nodes {xj+1/2}Nj=0, and
set Ij = (xj−1/2, xj+1/2)
∆xj = xj−1/2 − xj+1/2 for j = 1, . . . , N
For simplicity, take the mesh to be uniform: ∆x = constant.
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DG Method for Burgers’ Equation (cont.)

Denote uh as the approximate solution.

Multiplication by an arbitrary test function, φh, and integrating by
parts, ∫

Ij

(uh)tφh dx+
∫
Ij

(
u2
h

2

)
x

φh dx = 0,

∫
(uh)tφh dx−

∫ (
u2
h

2

)
(φh)x −

N∑
j=1

((1
2 û

2
h

)
[φh]

)
j+1/2

= 0,

where
∫

=
N∑
j=1

∫
Ij

, û2
h is the numerical flux, and [φh] = φ+

h − φ
−
h .
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DG Method for Burgers’ Equation (cont.)

All that remains is determine how we should define û2
h

From the method of characteristics, we know how information
propagates over time, that is in the direction of the
characteristics
Therefore, we choose what is called the “upwind flux,” and
take û2

h = (u−h )2, where we take the value at the cell
boundary to be from the left side
In general, the choice of numerical flux is more difficult
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Results

For the numerical test, we will solve the problem
ut +

(
u2

2

)
x

= 0 (x, t) ∈ (0, 1)× (0, T )

u(x, 0) = 2 + sin(2πx) (x, t) ∈ (0, 1)× {0}
u(0, t) = u(1, t)

where T is the final time.
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Discontinuous Galerkin (DG) Method

Convergence Rate

Piecewise Linear (p = 1)

N E1
u Order

20 2.7499e-01
40 6.9351e-02 1.987
80 1.7595e-02 1.978

160 4.4458e-04 1.984

Piecewise Quadratic (p = 2)

N E1
u Order

20 9.7444e-04
40 1.1725e-04 3.054
80 1.4676e-05 2.998

160 1.8413e-06 2.994

Piecewise Cubic (p = 3)

N E1
u Order

20 2.1803e-05
40 1.5436e-06 3.820
80 1.0416e-07 3.889

160 6.3546e-09 4.034

Piecewise Quartic (p = 4)

N E1
u Order

20 7.8406e-07
40 2.6463e-08 4.888
80 8.2327e-10 5.006

160 2.4821e-11 5.051
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Results
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Figure : This is the approximation at time t = 0.
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BBM-System
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DG Formulation

Coupled BBM-system in Conservation Form

The coupled BBM-system given by{
ηt + ux + (ηu)x − 1

6ηxxt = 0,
ut + ηx + uux − 1

6uxxt = 0.

We can write the above system in a conservation form
(
η − 1

6ηxx
)
t
+ (u+ (ηu))x = 0,(

u− 1
6uxx

)
t
+
(
η + u2

2

)
x

= 0.
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DG Formulation

Coupled BBM-system as a system of first order equations

We can rewrite the coupled-BBM system into a system of first
order equations as the following

wt + (η + q)x = 0

w = u− 1
6rx

r = ux

q = 1
2u

2

vt + (u+ p)x = 0

v = η − 1
6sx

s = ηx

p = ηu
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DG Formulation
The DG method is formulated as follows: for any test functions
φh, ψh, ϕh, ζh, ρh, θh, ξh, ϑh ∈ V k

h , find
wh, vh, uh, ηh, rh, sh, ph, qh ∈ V k

h such that∫
(wh)tφh dx−

∫
(ηh + qh) (φh)x dx−

N∑
j=1

((η̃h + q̂h)[φh])j+ 1
2

= 0

∫
whψh dx−

∫
uh(ψh)x dx−

1
6

∫
rh(ψh)x dx−

1
6

N∑
j=1

(r̂h[ψh])j+ 1
2

= 0

∫
rhϕh dx+

∫
uh(ϕh)x dx+

N∑
j=1

(ûh[ϕh])j+ 1
2

= 0

∫
qhζh dx−

∫ (1
2(uh)2

)
ζh dx = 0
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DG Formulation

DG Formulation (cont.)

∫
(vh)tρh dx−

∫
(uh + ph) (ρh)x dx−

N∑
j=1

((ũh + p̂h)[ρh])j+ 1
2

= 0

∫
vhθh dx−

∫
ηhθh dx−

1
6

∫
sh(θh)x dx−

1
6

N∑
j=1

(ŝh[θh])j+ 1
2

= 0

∫
shξh dx+

∫
ηh(ξh)x dx+

N∑
j=1

(η̂h[ξh])j+ 1
2

= 0
∫
phϑh dx−

∫
(ηhuh)ϑh dx = 0
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DG Formulation

Choice of Numerical Flux

We investigate two different choices of numerical flux, depending
on what properties we wish to preserve. First is the alternating flux

{
ûh = u+

h ,

η̂h = η−h .


ũh + p̂h = u+

h + p+
h ,

η̃h + q̂h = η−h + q−h ,

r̂h = r−h ,

ŝh = s+
h .

Choice of flux follows from trying cancel out the boundary
terms that arise in the DG formulation

Choosing uh, ηh, and ph, qh, and rh, sh from opposite sides,
the summation terms, and some of the integrals cancel out
from integration by parts
Remaining terms give the energy which is conserved by the
method
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ũh + p̂h = u+

h + p+
h ,

η̃h + q̂h = η−h + q−h ,

r̂h = r−h ,
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DG Formulation

Stability Theorem

Theorem (Stability)
For the choice of alternating flux, the (continuous) energy, Eh(t), is
conserved by the DG method, i.e.

d

dt
Eh(t) = d

dt

∫
I
(η2
h + (1 + ηh)u2

h) dx = 0

for all time.

The proof follows from choosing the alternating flux from the
previous slides. Boundary terms can be eliminated by integration
by parts identities. The proof is similar to that of the energy
conservation theorem found in Chen, Liu (2012) at the PDE level.
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DG Formulation

Choice of Numerical Flux

Second, is the upwind flux which introduces numerical dissipation,
and has the choices of{

ũh = {uh} − 1
2 [ηh],

η̃h = {ηh} − 1
2 [uh].(̃uh)t = {(uh)t}+ 1

2 [(ηh)t],
(̃ηh)t = {(ηh)t}+ 1

2 [(uh)t].

{
q̂h = {qh} − 1

2 [ph],
p̂h = {ph} − 1

2 [qh].(̃rh)t = {(rh)t} − 1
2 [(sh)t],

(̃sh)t = {(sh)t} − 1
2 [(rh)t].

Notation: {uh} = u+
h

+u−
h

2 and [uh] = u+
h − u

−
h

Choice of flux follows from eliminating the third derivative
term to get a system of hyperbolic conservation laws
Upwind flux is the standard choice for this type of system
Chosen to add numerical dissipation to the system
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DG Formulation

Energy Dissipation Theorem

Theorem (Energy Dissipation)
For the choice of upwind flux, the energy, Eh(t), satisfies

d

dt
Eh(t) = d

dt

∫
I
(η2
h + (1 + ηh)u2

h) dx ≤ 0

with the DG method.

The proof follows similar to the previous stability proof, except we
choose the upwind flux choices from previous slides. With this
choice, boundary terms from the DG method are still present.
These terms can be bounded by a routine application of Young’s
inequality to get the energy estimate.
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DG Formulation

Advantages/Disadvantages for Numerical Fluxes

Comparison of Alternating vs. Upwind
Alternating Flux

Method is stable
Conserves energy exactly
Good for long time simulations

Upwind Flux

Method is stable
Dissipates energy over time
Not accurate for long time simulations
Better choice when shocks/discontinuities are present
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Time Discretizations

We have used three different types of time discretizations over the
course of the project:

Strong Stability Preserving (SSP) Runge-Kutta (RK) Methods

1 SSPRK3 and SSPRK4
2 High order SSP methods maintain the total variation

diminishing (TVD) property
3 SSP methods are used to control numerical oscillations that

occur around discontinuities
Midpoint Rule Method

1 Implicit time stepping method
2 Conserves the discrete energy equivalent to the continuous

case, over longer time than SSPRK4
3 Computationally expensive as this is an implicit method
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Remaining Theoretical Work

The error estimate proof of the DG method for the single
BBM equation case completed. We have proved the
suboptimal error estimate.

For the coupled BBM system, we would also like to establish
the sub-optimal error estimate

||u− uh|| ≤ Chk+ 1
2

where u is the true solution, uh is the DG approximation, and
k is the degree of the piecewise polynomial space.
Difficulty arises in this proof due to the nonlinear terms
present and the coupled nature of the system.
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Numerical Results

Solutions to the BBM-system (Exact Traveling Wave
Solution)

Chen (1998), the exact traveling wave solution to the
BBM-system is

u(x, t) = 3k sech2
( 3√

10
(x− kt− x0)

)
,

η(x, t) =
15
4

(
−2 + cosh

(
3
√

2
5(x− kt− x0)

))
sech4

( 3√
10

(x− kt− x0)
)
,

where k = ±5
2 , and x0 is the x value where the center of the

wave is located
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Numerical Results

Solutions to the BBM-system (Approximate Solitary Wave
Solution)

Alazman, et. all (2006), the coupled BBM-system has solitary
wave solutions similar to the single BBM equation given by

vt + vx + 3
2εvvx −

1
6εvxxt = 0,

where ε represents the ratio of the maximum wave amplitude
to the undisturbed depth of the liquid.

The exact traveling wave solution to the single BBM equation
is

v(x, t) = sech2
(

1
2

√
3
κ

(x− κt− x0)
)
,

where κ = 1 + ε/2.
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Numerical Results

Solutions to the BBM-system (Approximate Solitary Wave
Solution)

An approximate solitary wave can be constructed using the
following initial condition with the coupled BBM-system

η(x, 0) = v(x, 0),

u(x, 0) = v(x, 0)− 1
4εv(x, 0)2,

where v(x, t) is the exact traveling solution to the single
BBM-equation

Compare the single BBM solution to the coupled-BBM system
with given initial data
Approximate solitary wave for the coupled-BBM system,
η(x, t), is accurate to O

(1
ε

)
in time
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Numerical Results

Convergence Test: Alternating Flux, SSPRK4 in Time
(Exact Traveling Wave Solution)

Parameters: k = 2, L = 40,∆x = 1
2j for j = 0, . . . , 4, ∆t = .1∆x, T = 1

Nx j CPU (s) E1
η Order E1

u Order
40 0 0.163 1.6003e-00 9.3584e-01
80 1 0.504 1.5717e-01 3.34 6.9160e-02 3.75

160 2 3.505 1.5362e-02 3.35 5.0564e-03 3.77
320 3 25.795 1.7227e-03 3.15 5.2204e-04 3.27
640 4 271.279 2.0514e-04 3.06 6.4118e-05 3.02
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Numerical Results

Convergence Test: Alternating Flux, and Midpoint Rule in
Time (Exact Traveling Wave Solution)

Parameters: k = 2, L = 40,∆x = 1
2j for j = 0, . . . , 4, ∆t = .1∆x2,

T = 1, tolerance = 10−10

Nx j CPU (s) E1
η Order E1

u Order
40 0 0.710 2.1994e-00 1.5848e-00
80 1 2.328 1.7709e-01 3.63 1.1434e-01 3.79

160 2 14.034 1.5581e-02 3.50 7.0977e-03 4.00
320 3 214.036 1.6858e-03 3.20 6.0759e-04 3.54
640 4 3327.298 1.9711e-04 3.09 6.7434e-05 3.17
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Numerical Results

Convergence Test: Dissipative Flux, and SSPRK4 in Time
(Approximate Solitary Wave Solution)

Parameters: k = 2, L = 40,∆x = 1
2j for j = 0, . . . , 4, ∆t = .1∆x, T = 1

Nx j CPU (s) E1
η Order E1

u Order
40 0 0.166
80 1 0.422 2.4668e-02 2.4668e-02

160 2 1.924 2.6662e-03 3.209 2.6685e-03 3.208
320 3 67.544 3.1745e-04 3.070 3.1773e-04 3.070
640 4 530.353 3.9079e-05 3.022 3.9115e-05 3.002
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Numerical Results

Long Time Test Approximation - Alternating Flux,
SSPRK4 (Exact Traveling Wave Solution)
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Figure : For the long time test, we run the code up to T = 60, and track
L1 errors over time.
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Numerical Results

Long Time Test L1 Error - Alternating Flux, SSPRK4
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Figure : L1 errors plotted against time.
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Numerical Results

Long Time Test Approximation - Alternating Flux,
Midpoint in Time (Exact Traveling Wave Solution)
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Figure : For the long time test, we run the code up to T = 60, and track
L1 errors over time.



DG Method DG for BBM Stochastic

Numerical Results

Long Time Test L1 Error - Alternating Flux, Midpoint in
Time (Exact Traveling Wave Solution)
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Numerical Results

Conserved Quantity - Alternating-SSPRK4-Midpoint
Comparison (Exact Traveling Wave Solution)
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Figure : Comparison of Energy Values of SSPRK4 and Midpoint, with
Alternating Flux.
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Numerical Results

Solitary Wave Generation Test

For the solitary wave generation test, we start with a first order
approximation to the traveling wave solution that was used in the
mesh refinement, and long time tests. The initial condition is given
by

η(x, 0) = η0 sech2
(

1
2

√
3η0
k

(x− x0)
)
,

u(x, 0) = η(x, 0)− 1
4η(x, 0)2,

where η0 = 0.8 is the peak height for η(x, 0), and x0 = 20.

The wave is evolved over the long domain, then “filtered”, and
reset back to the left hand side of the domain. The process is
repeated until dispersive tails are “small.”
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Numerical Results

Solitary Wave Generation Test Initial Condition
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Figure : Solitary wave initial condition profile.
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Numerical Results

Solitary Wave Generation Test - One Evolution (T = 42)
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Figure : Solitary wave propagation at T = 42.
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Numerical Results

Solitary Wave Collision Test

Solitary Wave Collision Test

(Loading movie...)
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Alternating and upwind flux choices that conserve energy and
work well for long time simulations
Stability results and error estimates for the proposed method
Numerical experiments validating the usefulness of the method
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Observe the effect of stochastic initial conditions on solution
Test case with Burgers’ equation
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method
Goal is to implement the method, no new results
Observe the effect of stochastic initial conditions on solution
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Burgers’ Equation with Stochastic Inputs

Burgers’ Equation with Stochastic Inputs Problem
Statement

Burgers’ equation can be stated as{
ut + uux = 0 for (x, t) ∈ [a, b]× [0, T ]
u(x, 0) = u0(x) for (x, t) ∈ [a, b]× {0}

We will consider the situation when the initial condition has a
stochastic component. The problem is stated as{

ut + uux = 0 for (x, t, ξ) ∈ [0, 3]× [0, T ∗ − ε]× R
u(x, 0, ξ) = u0(x, ξ) for (x, t, ξ) ∈ [0, 3]× {0} × R

where the solution, u(x, t, ξ) is a function of the random parameter
ξ ∼ U(−1, 1). We run the code up to time T ∗ − ε which is the
time just before the shock develops.
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Burgers’ Equation with Stochastic Inputs

Problem Statement (cont.)

For the stochastic initial condition, u0(x, ξ), we have the following
formula

u0(x, ξ) = K01[0,x0](x− σξ) +K11[x1,3](x− σξ) +(
K1 −K0
x1 − x0

(x− σξ)− K0x1 −K1x0
x1 − x0

)
1[x0,x1](x− σξ)

where 1 is the characteristic function, and σ is the weight for the
stochastic component.

The values of the other components are K0 = 1.2, K1 = 0.2,
x0 = 0.5, x1 = 1.5, and σ = 0.01.
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Problem Statement (cont.)
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gPC with DG Method

gPC Expansion

To begin, we assume that the solution to the problem can be
written as the spectral expansion

u(x, t, ξ) =
∞∑
i=0

ui(x, t)Φi(ξ),

where the Φi(ξ) are the stochastic basis elements.

Denote the inner product over the probability space to be

〈u, v〉 =
∫

Ω
uvf(ξ) dξ,

where f(ξ) = 1
2 , the probability density function for U(−1, 1).
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gPC with DG Method

gPC Expansion of Burgers’ Equation

To find the expansion of Burgers’ Equation, we substitute the
spectral expansion into the PDE to get

ut + uux = 0
∞∑
i=0

∂ui
∂t

Φi(ξ) +

 ∞∑
j=0

ujΦj(ξ)

( ∞∑
i=0

∂ui
∂x

Φi(ξ)
)

= 0

Now by multiplying through by the basis functions, Φk(ξ) and
integrating over the probability space Ω, we have

∂uk
∂t
〈Φk,Φk〉+

M∑
i=0

M∑
j=0

ui
∂uj
∂x
〈ΦiΦj ,Φk〉 = 0 for k = 0, 1, . . . ,M

where we have truncated the expansion to M + 1 terms.
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gPC with DG Method

gPC Expansion of Burgers’ Equation

From the previous slide,

∂uk
∂t
〈Φk,Φk〉+

M∑
i=0

M∑
j=0

ui
∂uj
∂x
〈ΦiΦj ,Φk〉 = 0 for k = 0, 1, . . . ,M

We can also write the above in conservative form

∂uk
∂t
〈Φk,Φk〉+

1
2
∂

∂x

M∑
i=0

M∑
j=0

uiuj〈ΦiΦj ,Φk〉 = 0 for k = 0, 1, . . . ,M
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gPC with DG Method

gPC Solution to Burgers’ Equation

The solution then can be written as follows:

u(x, t, ξ) =
N∑
i=0

ui(x, t)Φi(ξ),

ui(x, t) =
k∑
j=0

ai,j(t)ψj(x),

where the Φi(ξ) are the Legendre polynomials, ψj(x) ∈ V k
h (Ij),

and the ai,j are coefficient weights at a any time t.

Therefore, each ui(x, t) is a polynomial of degree k from the DG
method, with N + 1 such equations. The numerical solution is
thus a finite sum of products of polynomials in x and ξ.
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gPC with DG Method

Implementation

In order to solve the stochastic problem, we have to solve the
system of conservation laws on the previous slide. First, we have to
write the initial condition in terms of the gPC basis

u0(x, ξ) =
1∑
i=0

ũi(x)Φi(ξ),

where

ũi(x) = 〈Φi(ξ), u0(x, ξ)〉 = 1√
2π

∫
Ω

Φi(ξ)u0(x, ξ)e
−ξ2

2 dξ
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gPC with DG Method

Implementation

In order to compute the integral above, we use Gauss-Hermite
quadrature, which approximates

1√
2π

∫ ∞
−∞

g(ξ)e
−ξ2

2 dξ ≈ 1√
π

n∑
i=1

ωig(
√

2xi)

where we used a change of variables x = ξ√
2 , and ωi and xi = are

the Gauss-Hermite quadrature weights and nodes over [−∞,∞].

Another change of variables is required on the initial condition

u0(x, ξ) = K01[0,x0](x− σξ) +K11[x1,3](x− σξ) +(
K1 −K0
x1 − x0

(x− σξ)− K0x1 −K1x0
x1 − x0

)
1[x0,x1](x− σξ)
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gPC with DG Method

Implementation

This is due to the fact we need to integrate out the stochastic
term ξ, so the IC becomes

u0(x, ξ) = K01[x−x0
σ

, x
σ

](ξ) +K11[x−3
σ
,
x−x1
σ

](ξ) +(
K1 −K0
x1 − x0

(x− σξ)− K0x1 −K1x0
x1 − x0

)
1[x−x1

σ
,
x−x0
σ

](ξ)

In the above, the values of x are taken to be the quadrature points
we will use in the next step for the DG method, so the now have
the initial condition written in the form

u0(x, ξ) =
1∑
i=0

ũi(x)Φi(ξ),
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gPC with DG Method

DG Implementation

We now return to solve the deterministic system

ut + ∂

∂x
f(u) = 0, f(u) = 1

2A(u)u

where
1
2A(u)u =

[1
2u

2
0 + 1

2u
2
1

u0u1

]

In system form, we have

∂u0
∂t

+ ∂

∂x

(1
2u

2
0 + 1

2u
2
1

)
= 0

∂u1
∂t

+ ∂

∂x
(u0u1) = 0



DG Method DG for BBM Stochastic

gPC with DG Method

DG Implementation

We now return to solve the deterministic system

ut + ∂

∂x
f(u) = 0, f(u) = 1

2A(u)u

where
1
2A(u)u =

[1
2u

2
0 + 1

2u
2
1

u0u1

]
In system form, we have

∂u0
∂t

+ ∂

∂x

(1
2u

2
0 + 1

2u
2
1

)
= 0

∂u1
∂t

+ ∂

∂x
(u0u1) = 0



DG Method DG for BBM Stochastic

gPC with DG Method

DG Implementation
The weak formulation of the system is given by the following∫ 3

0
(u0)tφ dx+

∫ 3

0

(1
2u

2
0 + 1

2u
2
1

)
x
φ dx = 0∫ 3

0
(u1)tψ dx+

∫ 3

0
(u0u1)x ψ dx = 0,

For the DG formulation, we choose test functions φh, ψh ∈ V k
h ,
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DG Implementation
The weak formulation of the system is given by the following∫ 3

0
(u0)tφ dx+

∫ 3

0

(1
2u

2
0 + 1

2u
2
1

)
x
φ dx = 0∫ 3

0
(u1)tψ dx+

∫ 3

0
(u0u1)x ψ dx = 0,

For the DG formulation, we choose test functions φh, ψh ∈ V k
h ,

and search for (u0)h, (u1)h ∈ V k
h such that∫

((u0)h)tφh dx−
∫ (1

2((u0)h)2 + 1
2((u1)h)2

)
(φh)x dx

−
N∑
j=1

((1
2((̂u0)h)2 + 1

2((̂u1)h)2
)

[φh]
)
j+ 1

2

= 0,

∫
((u1)h)tψh dx−

∫
(ph) (ψh))x dx−

N∑
j=1

(p̂h[ψh])j+ 1
2

= 0



DG Method DG for BBM Stochastic

gPC with DG Method

DG Implementation

where we take ph to be the projection of the non-linear term
(u0)h(u1)h into the DG space. The numerical flux for the hat
terms (̂u0)h, (̂u1)h, p̂h are all taken to be the upwind flux.

For the implementation, we do a stochastic gPC approximation of
order 1, and a DG method that is piecewise linear. The mesh size
is taken to be ∆x = .1/32, and ∆t = .1∆x. There are 25
stochastic sample initial conditions taken.
A minmod slope limiter is also implemented to reduce oscillations
at the edges corners of the piecewise function.
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Initial Condition With No Stochastic Component
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Figure : The initial condition with the stochastic component set to zero.
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Order 3 gPC Basis Results
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Figure : The light-blue line is the deterministic IC from a previous slide.
The multi-color line is the average of the initial conditions. The black,
dark blue, and red represent u0(x, ξ), u1(x, ξ), and u2(x, ξ), respectively.
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Order 3 gPC Basis Results
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Figure : This is the approximation at time T = .5.
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Figure : This is the approximation at time T = T ∗ − ε = 0.97.
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Sample Initial Conditions - How Stochasticity Affects
Shock Location
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Figure : Six sample initial conditions.
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How Stochasticity Affects Shock Location
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Figure : Six sample initial conditions evolved over time, with the average
solution plotted for reference.
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