MATH 009B (053)
 Quiz 1 Solutions

Problem 1

Evaluate the indefinite integral

$$
\int \frac{\sqrt[3]{x}}{x} d x
$$

Solution: First simplify the integrand, and then use the power rule:

$$
\begin{aligned}
\int \frac{\sqrt[3]{x}}{x} d x=\int \frac{x^{\frac{1}{3}}}{x} d x & =\int x^{-\frac{2}{3}} d x \\
& =\frac{x^{\frac{1}{3}}}{\frac{1}{3}}+C \\
& =3 x^{\frac{1}{3}}+C \quad \text { or } \quad 3 \sqrt[3]{x}+C
\end{aligned}
$$

Problem 2

Evaluate the definite integral $\int_{1}^{3} 4 x d x$ by graphing the function and using area formulas from geometry, as we did in class. (Do not use calculus.)

Solution: The graph of the function is in the figure above, with the integral being represented as the shaded region. We plug in the x-values into $y=4 x$ to get the y-values. Then we need to find the area of the region using geometry, not calculus. (Although you should know the answer via calculus since the integral of $4 x$ is $2 x^{2}$, hence the solution is $\left.2\left(3^{2}-1^{2}\right)=16\right)$. The shaded region is a trapezoid. You can decompose it into a triangle and a rectangle, or use the area of a trapezoid directly. The values a and b are the two heights of the trapezoid, and the h is the width:

$$
A_{\text {trapezoid }}=\frac{1}{2}(a+b) h=\frac{1}{2}(12+4)(3-1)=\frac{1}{2} \cdot 16 \cdot 2=16
$$

