MATH 009B (053)

 Quiz 2 Solutions

 Quiz 2 Solutions}

Problem 1

Approximate the integral

$$
\int_{1}^{3} \frac{x^{2}}{x^{2}+1} d x
$$

using a right-hand Riemann sum with 6 endpoints. Leave your answer as an unsimplified sum of 6 terms.

Solution: According to the directions, we need to have 6 rectangles to compute 6 areas, hence $n=6$. Let the endpoints be $a=1$ and $b=3$. We must recall the definition of the width of each rectangle, which is given as $\Delta x=\frac{b-a}{n}=\frac{3-1}{6}=\frac{2}{6}=\frac{1}{3}$. It isn't necessary to draw the picture to do this problem, but it helps in understanding the problem. The graph is given below. Since we

are doing a RH Riemann sum, we start at the right endpoint, draw up to the function, then draw a line over to the next point and draw a line down, and repeat. The figure show where we evaluate the function, all the points where the function intersects the corner of the rectangle. Here is the math:

$$
\begin{aligned}
\sum_{i=1}^{6} f\left(x_{i}\right) \Delta x & =\Delta x \sum_{i=1}^{6} f\left(x_{i}\right) \\
& =\Delta x\left(\frac{\left(\frac{4}{3}\right)^{2}}{\left(\frac{4}{3}\right)^{2}+1}+\frac{\left(\frac{5}{3}\right)^{2}}{\left(\frac{5}{3}\right)^{2}+1}+\frac{(2)^{2}}{(2)^{2}+1}+\frac{\left(\frac{7}{3}\right)^{2}}{\left(\frac{7}{3}\right)^{2}+1}+\frac{\left(\frac{8}{3}\right)^{2}}{\left(\frac{8}{3}\right)^{2}+1}+\frac{(3)^{2}}{(3)^{2}+1}\right) \\
& =\frac{1}{3}\left(\frac{16}{25}+\frac{25}{34}+\frac{4}{5}+\frac{49}{58}+\frac{64}{73}+\frac{9}{10}\right)
\end{aligned}
$$

Problem 2

Use the Fundamental Theorem of Calculus to evaluate: $\frac{d}{d x}\left(\int_{0}^{\tan (x)} e^{-t^{2}} d t\right)$
Solution: The key to these problems is to remember the chain rule on the bounds of integration. First I will show the detailed explanation which would for sure get you full credit on any exam. The second method is the quick shortcut without all the details.

Method 1 (Detailed-Rigorous Version): Essentially this question is asking you to find $F^{\prime}(x)$, where

$$
F(x)=\int_{0}^{\tan (x)} e^{-t^{2}} d t
$$

First, we want to view $F(x)$ in a slightly different way, the way the Fundamental Theorem of Calculus can be applied the way we know it. Thus view $F(x)$ as

$$
G(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

then we know from the Fundamental Theorem of Calculus that $G^{\prime}(x)=e^{-x^{2}}$. Now, our question didn't have just an x, it had $\tan (x)$. Thus, $F(x)$ is a composition of $G(x)$ and $g(x)=\tan (x)$, which means that $F(x)=G(g(x))$. Also, we will need the fact that $g^{\prime}(x)=(\tan (x))^{\prime}=\sec ^{2}(x)$. Then by our usual 009A calculus chain rule, we have the following

$$
\begin{aligned}
F^{\prime}(x) & =G^{\prime}(g(x)) g^{\prime}(x) \\
& =e^{-(g(x))^{2}} g^{\prime}(x) \\
& =e^{-\tan ^{2}(x)} \sec ^{2}(x)
\end{aligned}
$$

Method 2 (Quick Version): For the shortcut method, we can write the general situation as

$$
F(x)=\int_{h(x)}^{g(x)} f(t) d t
$$

The formula for the derivative is given below.

$$
F^{\prime}(x)=\frac{d}{d x}\left(\int_{h(x)}^{g(x)} f(t) d t\right)=f(g(x)) g^{\prime}(x)-f(h(x)) h^{\prime}(x)
$$

Some explanation is in order. To remember this, just compute by taking the composition of the top bound $g(x)$ and the integrand $f(t)$, and multiplying by the derivative of the top bound, $g^{\prime}(x)$. Then subtract by the composition of the bottom bound $h(x)$ and the integrand $f(t)$, and multiply by the derivative of the bottom bound, $h^{\prime}(x)$. Having this formula, we just apply directly to our problem

$$
\begin{aligned}
F^{\prime}(x)=\frac{d}{d x}\left(\int_{0}^{\tan (x)} e^{-t^{2}} d t\right) & =e^{-\tan ^{2}(x)} \sec ^{2}(x)-e^{-\tan ^{2}(x)}(0) \\
& =e^{-\tan ^{2}(x)} \sec ^{2}(x)
\end{aligned}
$$

NOTE: You can only apply this method when the domains of the functions $g(x)$ and $h(x)$, overlap. Otherwise, you cannot apply this method.

