MATH 009B (053)
 Quiz 3 Solutions

Problem 1

Evaluate the following integral

$$
\int \frac{x}{x^{4}+1} d x
$$

Solution: This problem is a u-substitution question. Remember that if you change variables to u, you cannot have any x variables left in the integral. Everything must be in terms of u. For this question, we take $u=x^{2}$, which means that $d u=2 x d x$, or alternatively $\frac{1}{2} d u=x d x$. Now, $x^{4}=\left(x^{2}\right)^{2}=u^{2}$. Making these substitutions, we have

$$
\begin{aligned}
\int \frac{x}{x^{4}+1} d x & =\frac{1}{2} \int \frac{1}{u^{2}+1} d u \\
& =\frac{1}{2} \arctan (u)+C \\
& =\frac{1}{2} \arctan \left(x^{2}\right)+C
\end{aligned}
$$

Note we always return the variable back to the one the question was asked, so the final answer is in terms of x, not u.

Problem 2

Evaluate the following integral

$$
\int x \cdot e^{x^{2}} d x
$$

Solution: This problem is also a u-substitution question. Choose $u=x^{2}$, so then $d u=2 x d x$, or alternatively $\frac{1}{2} d u=x d x$. Making these substitutions, we have

$$
\begin{aligned}
\int x \cdot e^{x^{2}} d x & =\frac{1}{2} \int e^{u} d u \\
& =\frac{1}{2} e^{u}+C \\
& =\frac{1}{2} e^{x^{2}}+C
\end{aligned}
$$

