MATH 009B (053) Quiz 3 Solutions

Problem 1

Evaluate the following integral

$$\int \frac{x}{x^4 + 1} \, dx$$

Solution: This problem is a *u*-substitution question. Remember that if you change variables to u, you **cannot** have any x variables left in the integral. Everything must be in terms of u. For this question, we take $u = x^2$, which means that du = 2xdx, or alternatively $\frac{1}{2}du = xdx$. Now, $x^4 = (x^2)^2 = u^2$. Making these substitutions, we have

$$\int \frac{x}{x^4 + 1} dx = \frac{1}{2} \int \frac{1}{u^2 + 1} du$$
$$= \frac{1}{2} \arctan(u) + C$$
$$= \frac{1}{2} \arctan(x^2) + C$$

Note we *always* return the variable back to the one the question was asked, so the final answer is in terms of x, not u.

Problem 2

Evaluate the following integral

$$\int x \cdot e^{x^2} dx$$

Solution: This problem is also a *u*-substitution question. Choose $u = x^2$, so then $du = 2x \, dx$, or alternatively $\frac{1}{2}du = xdx$. Making these substitutions, we have

$$\int x \cdot e^{x^2} dx = \frac{1}{2} \int e^u du$$
$$= \frac{1}{2} e^u + C$$
$$= \frac{1}{2} e^{x^2} + C$$