MATH 009B (053)
 Quiz 5 Solutions

Problem 1

Determine the partial fraction decomposition of

$$
\frac{x^{2}+1}{x\left(x^{2}+2\right)}
$$

Solution: Recall the numerators that are required to deal with the given denominator. We have an x which has a constant numerator, say A. The second factor is an irreducible polynomial of the second order, which has numerator $B x+C$. Therefore we have

$$
\begin{aligned}
\frac{x^{2}+1}{x\left(x^{2}+2\right)} & =\frac{A}{x}+\frac{B x+C}{x^{2}+2} \\
& =\frac{A\left(x^{2}+2\right)+(B x+C) x}{x\left(x^{2}+2\right)} \\
& =\frac{(A+B) x^{2}+C x+2 A}{x\left(x^{2}+2\right)}
\end{aligned}
$$

which gives us a way to match the numerator of the LHS and RHS. NOTE: For the quiz, you only needed to set up the first line of the above equation. We set up a system of equations by setting the coefficients of the x^{2}, x, and constant terms equal to each other:

$$
\begin{aligned}
A+B & =1 \\
C & =0 \\
2 A & =1
\end{aligned}
$$

By solving the system of equations, we have that $A=\frac{1}{2}, B=\frac{1}{2}$, and $C=0$. So the final decomposition is

$$
\frac{x^{2}+1}{x\left(x^{2}+2\right)}=\frac{1}{2 x}+\frac{x}{2\left(x^{2}+2\right)}
$$

Problem 2

Evaluate the following integral

$$
\int \frac{1}{x(x+1)^{2}} d x
$$

Solution: Use the hint and the linearity of the integral to compute:

$$
\begin{aligned}
\int \frac{1}{x(x+1)^{2}} d x & =\int\left(\frac{1}{x}-\frac{1}{x+1}-\frac{1}{(x+1)^{2}}\right) d x \\
& =\int \frac{1}{x} d x-\int \frac{1}{x+1} d x-\int \frac{1}{(x+1)^{2}} d x \\
& =\ln (|x|)-\ln (|x+1|)+\frac{1}{x+1}+C
\end{aligned}
$$

The first integral is by the formula. The second and third integrals are computed using u substitution with $u=x+1$.

