MATH 009B (053)
 Quiz 8 Solutions

Problem 1

Use the shell method to find the volume of the solid obtained by revolving about the y-axis the region in the plane bounded by $y=e^{x}$, the x-axis, $x=0$, and $x=1$.

Solution: For these problems, it is helpful, but not required, to draw a picture. The graph is given below. The representative shell is drawn, and notice that the shell would have to expand to

the left and right, while moving up the function $y=e^{x}$ to cover the region of interest. The shell thickness is $d x$, which would mean we integrate with respect to x. We find the bounds by looking at the region in quadrant 1 . The x values are bounded in the interval $0 \leq x \leq 1$, so these are our bounds of integration. To apply the formula, we need the radius of the shell, $r(x)$, and the height, $h(x)$. The height of the shell is $h(x)=e^{x}$, the function itself. Be careful with the radius of the shell, as the radius can be complicated depending on the problem. Here, we simply measure from the axis of rotation $(x=0)$ to the shell edge, which just gives us $r(x)=x$. Now compute:

$$
\begin{aligned}
V & =\int_{a}^{b} 2 \pi r(x) h(x) d x \\
& =2 \pi \int_{0}^{1} x e^{x} d x \quad \text { use integration by parts } u=x, d v=e^{x} d x \\
& =2 \pi\left(\left.x e^{x}\right|_{0} ^{1}-\int_{0}^{1} e^{x} d x\right) \\
& =2 \pi\left(\left.x e^{x}\right|_{0} ^{1}-\left.e^{x}\right|_{0} ^{1}\right) \\
& =2 \pi(e-(e-1)) \\
& =2 \pi
\end{aligned}
$$

