Name: \qquad Score: \qquad / 100

Student ID:

\qquad

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

	1	2	3	4	5	Total
\checkmark						
Score						
Pts. Possible	25	25	25	25	25	110

INSTRUCTIONS FOR STUDENTS

- You can use both sides of the paper for your solution. This is an 4 question exam.
- Students have 50 minutes to complete the exam.
- The test will be out of $\mathbf{1 0 0}$ points (4 questions). You may attempt a $5^{t h}$ question, which will have a maximum of 10 possible points. The highest possible score is therefore $\mathbf{1 1 0}$ points.
- In the above table, the row with the \checkmark, is for you to keep track of the problems you are attempting/completing.
- You may complete parts of problems, as partial credit will be given based on correctness, completeness, and ideas that are leading to the correct solutions.
- PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit.
- No notes, textbooks, phones, calculators, etc. are allowed for the exam.
- The last page of the test can be used for scratch work.

GOOD LUCK!

1) (25 pts.) Determine if the integral is convergent or divergent:

$$
\int_{1}^{\infty} \frac{x}{x^{3}+1} d x
$$

Solution:

Use the Direct Comparison Test (or Limit Comparison Test) for Integrals.

$$
x^{3}<x^{3}+1 \quad \Rightarrow \quad \frac{1}{x^{3}+1}<\frac{1}{x^{3}} \quad \Rightarrow \quad \frac{x}{x^{3}+1}<\frac{x}{x^{3}}=\frac{1}{x^{2}} \quad \text { for all } x>1 .
$$

So then by computation,

$$
0<\int_{1}^{\infty} \frac{x}{x^{3}+1} d x<\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty}-\frac{1}{t}+1=1<\infty
$$

So by Direct Comparison Test, the integral converges.
2) (20 pts.) (a) Eliminate the parameter in the for the following parametric equation

$$
x=4 \cos (t)+2 \quad y=2 \sin (t)+1
$$

(5 pts.) (b) Identify the type of graph from your result in part (a).

Solution:

(a) Rewrite x and y in terms of $\cos ^{2}(t)$ and $\sin ^{2}(t)$:

$$
\begin{aligned}
& x=4 \cos (t)+2 \\
&(x-2)^{2}=16 \cos ^{2}(t) \\
& \frac{(x-2)^{2}}{16}=\cos ^{2}(t) \\
& \text { and } \\
& y=2 \sin (t)+1 \\
&(y-1)^{2}=4 \sin ^{2}(t) \\
& \frac{(y-1)^{2}}{4}=\sin ^{2}(t)
\end{aligned}
$$

By using the trig identity $\sin ^{2}(t)+\cos ^{2}(t)=1$:

$$
\frac{(x-2)^{2}}{16}+\frac{(y-1)^{2}}{4}=1
$$

(b) The graph is an ellipse centered at $(2,1)$ with major axis $a=4$, and minor axis $b=2$.
3) Consider the parametric defined as: $x=t-e^{t}, y=t+e^{-t}$
(10 pts.) (a) Compute $\frac{d y}{d x}$.
(10 pts.) (b) Compute $\frac{d^{2} y}{d x^{2}}$.
(5 pts.) (c) For which values of t is the curve concave upward?

Solution:

(a) Use the formula for the derivative:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{1-e^{-t}}{1-e^{t}}=\frac{1}{1-e^{t}}\left(1-\frac{1}{e^{t}}\right)=\frac{1}{1-e^{t}} \frac{-\left(1-e^{t}\right)}{e^{t}}=-e^{-t}
$$

(b) Use the formula for the second derivative:

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(-e^{-t}\right)}{1-e^{t}}=\frac{e^{-t}}{1-e^{t}}
$$

(c) Since $e^{-t}>0$ for all t, we only need to check the sign of the denominator. So then, $1-e^{t}>0$ when $e^{t}<1$. Therefore, the curve is concave upward for $e^{t}<1($ or $t<\ln (1)=0)$.
4) (10 pts.) (a) Consider the polar curve $r=1 / \theta$. Find the slope of the tangent line to the curve at the point $\theta=\pi$.
(15 pts.) (b) Consider the polar curve $r=1+\sin (\theta)$. Find the θ where the tangent line is vertical for $0 \leq \theta<2 \pi$. State which value of θ give $\frac{d y}{d x}=\frac{0}{0}$ (you do not need to compute the limit).

Solution:

(a) Use the formula for the derivative:

$$
\begin{aligned}
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)}{\frac{d r}{d \theta} \cos (\theta)-r \sin (\theta)} & =\frac{-\frac{1}{\theta^{2}} \sin (\theta)+\frac{1}{\theta} \cos (\theta)}{-\frac{1}{\theta^{2}} \cos (\theta)-\frac{1}{\theta} \sin (\theta)} \\
& =\frac{-\frac{1}{\theta^{2}} \sin (\theta)+\frac{1}{\theta} \cos (\theta)}{-\frac{1}{\theta^{2}} \cos (\theta)-\frac{1}{\theta} \sin (\theta)} \cdot \frac{\theta^{2}}{\theta^{2}} \\
& =\frac{-\sin (\theta)+\theta \cos (\theta)}{-\cos (\theta)-\theta \sin (\theta)} \\
& \stackrel{\theta=\pi}{=}-\pi
\end{aligned}
$$

(b) Use the formula for the derivative:

$$
\begin{aligned}
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)}{\frac{d r}{d \theta} \cos (\theta)-r \sin (\theta)} & =\frac{\cos (\theta) \sin (\theta)+(1+\sin (\theta)) \cos (\theta)}{\cos ^{2}(\theta)-(1+\sin (\theta)) \sin (\theta)} \\
& =\frac{\cos (\theta) \sin (\theta)+\cos (\theta)+\sin (\theta) \cos (\theta)}{\cos ^{2}(\theta)-\sin (\theta)-\sin ^{2}(\theta)} \\
& =\frac{\cos (\theta)(2 \sin (\theta)+1)}{-\left(2 \sin ^{2}(\theta)+\sin (\theta)-1\right)} \\
& =\frac{\cos (\theta)(2 \sin (\theta)+1)}{-(2 \sin (\theta)-1)(\sin (\theta)+1)}
\end{aligned}
$$

We only need to find where the denominator is zero, we only solve two equations:

$$
\begin{aligned}
2 \sin (\theta)-1=0 & \sin (\theta)+1=0 \\
\sin (\theta)=\frac{1}{2} & \sin (\theta)=-1 \\
\theta=\frac{\pi}{6}, \frac{5 \pi}{6} & \theta=\frac{3 \pi}{2}
\end{aligned}
$$

The value of θ such that $\frac{d y}{d x}=\frac{0}{0}$, is $\frac{3 \pi}{2}$, since $\theta=\frac{3 \pi}{2}$ gives $\cos \left(\frac{3 \pi}{2}\right)=0$.
5) (25 pts.) Find the area of the region that lies inside the polar roses (the region is shaded in the labeled plot below).

$$
\begin{aligned}
& r=\cos (2 \theta) \\
& r=\sin (2 \theta)
\end{aligned}
$$

Hint 1: Use the symmetry at $\frac{\pi}{8}$ to simplify the integral. How many pieces do you really have? Hint 2: Identities that may be helpful: 1) $\sin ^{2}(2 \theta)=\frac{1}{2}-\frac{1}{2} \cos (4 \theta)$, 2) $\cos ^{2}(2 \theta)=\frac{1}{2}+\frac{1}{2} \cos (4 \theta)$.

Solution:

Find the intersection point first (the picture already gives you the value). We have to solve the equation:

$$
\begin{aligned}
\sin (2 \theta) & =\cos (2 \theta) \\
\tan (2 \theta) & =1 \\
2 \theta & =\frac{\pi}{4}, \frac{5 \pi}{4} \\
\theta & =\frac{\pi}{8}, \frac{5 \pi}{8}
\end{aligned}
$$

Using hint 1 , we have 8 petals, but by cleverly choosing the second function, which starts at the origin at $\theta=0$, from $\theta=0$ to $\theta=\pi / 8$, we get half of the first petal. Since the polar rose is symmetric, really have 16 half petals. Now we compute and use hint 2:

$$
\begin{aligned}
A & =8 \cdot 2 \int_{0}^{\pi / 8} \frac{1}{2} r^{2} d \theta \\
& =16 \int_{0}^{\pi / 8} \frac{1}{2} \sin ^{2}(2 \theta) d \theta \\
& =8 \int_{0}^{\pi / 8}\left(\frac{1}{2}-\frac{1}{2} \cos (4 \theta)\right) d \theta \\
& =\left.4\left(\theta-\frac{1}{4} \sin (4 \theta)\right)\right|_{0} ^{\pi / 8} \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK

END OF TEST

