Name: \qquad Score: \qquad / 100

Student ID:

\qquad

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

	1	2	3	4	5	6	7	8	9	Total
\checkmark										200
Score										
Pts. Possible	25	25	25	25	25	25	25	25	25	210

INSTRUCTIONS FOR STUDENTS

- Questions are on both sides of the paper. This is an 9 question exam.
- Students have 2 hours to complete the exam.
- The test will be out of $\mathbf{2 0 0}$ points (8 questions). You may attempt a $9^{t h}$ question, which will have a maximum of 10 possible points. The highest possible score is therefore $\mathbf{2 1 0}$ points.
- In the above table, the row with the \checkmark, is for you to keep track of the problems you are attempting/completing.
- You may complete parts of problems, as partial credit will be given based on correctness, completeness, and ideas that are leading to the correct solutions.
- PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit. This means you need to state which test you are using for series questions! Clearly box your final answer.
- No notes, textbooks, phones, calculators, etc. are allowed for the exam.
- The back of the test can be used for scratch work.

GOOD LUCK!
FORMULAS:

Common Taylor Series	Common Taylor Series
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad$ for all $\|x\|<1$	$\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad$ for all $x \in \mathbb{R}$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad$ for all $x \in \mathbb{R}$	$\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \quad$ for all $x \in \mathbb{R}$
$\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}, \quad$ for $x \in(-1,1]$	$\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \quad$ for $\|x\| \leq 1$
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}, \quad$ for $\|x-a\|<R$	$(1+x)^{m}=\sum_{n=0}^{\infty}\binom{m}{n} x^{n}, \quad$ for $\|x\|<1$

1) (10 pts.) (a) Determine whether the sequence converges or diverges:

$$
a_{n}=\frac{(2 n-1)!}{(2 n+1)!}
$$

(15 pts.) (b) Determine whether the sequence converges or diverges:

$$
a_{n}=\left(1+\frac{2}{n}\right)^{n}
$$

2) (10 pts.) Determine whether the series is convergent or divergent:

$$
\sum_{n=1}^{\infty} \sqrt[n]{2}
$$

(15 pts.) (b) Determine whether the series is convergent or divergent:

$$
\sum_{n=1}^{\infty} \frac{1+6^{n}}{7^{n}}
$$

3) (25 pts.) Determine whether the series is convergent or divergent

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+4}
$$

4) (25 pts.) Determine whether the series is convergent or divergent

$$
\sum_{n=1}^{\infty} \frac{n+5}{\sqrt[3]{n^{7}+n^{2}}}
$$

5) (15 pts.) (a) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=1}^{\infty} \frac{2^{n} n!}{(n+2)!}
$$

(10 pts.) (b) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{4 n}}
$$

6) (25 pts.) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{n^{n}}{n!}
$$

7) (25 pts.) Find the radius of convergence and interval of convergence for the following power series:

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{2 n+1}
$$

8) Find the sum of the following series:
(5 pts.) (a) $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$
(5 pts.) (b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{3}^{2 n+1}}{2 n+1}$
(10 pts.) (c) $\sum_{n=1}^{\infty}\left(-1^{n}\right) x^{2 n}$
9) (20 pts.) (a) Compute the following integral using Taylor series.

$$
\int \arctan \left(x^{2}\right) d x
$$

(5 pts.) (b) Find the Taylor series centered at $a=\frac{\pi}{2}$ for

$$
f(x)=\sin (x)
$$

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK

