Name: \qquad Score: \qquad / 100

Student ID:

\qquad

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

	1	2	3	4	5	6	7	8	9	Total
\checkmark										200
Score										
Pts. Possible	25	25	25	25	25	25	25	25	25	210

INSTRUCTIONS FOR STUDENTS

- Questions are on both sides of the paper. This is an 9 question exam.
- Students have 2 hours to complete the exam.
- The test will be out of $\mathbf{2 0 0}$ points (8 questions). You may attempt a $9^{t h}$ question, which will have a maximum of 10 possible points. The highest possible score is therefore $\mathbf{2 1 0}$ points.
- In the above table, the row with the \checkmark, is for you to keep track of the problems you are attempting/completing.
- You may complete parts of problems, as partial credit will be given based on correctness, completeness, and ideas that are leading to the correct solutions.
- PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit. This means you need to state which test you are using for series questions! Clearly box your final answer.
- No notes, textbooks, phones, calculators, etc. are allowed for the exam.
- The back of the test can be used for scratch work.

GOOD LUCK!
FORMULAS:

Common Taylor Series	Common Taylor Series
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad$ for all $\|x\|<1$	$\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad$ for all $x \in \mathbb{R}$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad$ for all $x \in \mathbb{R}$	$\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \quad$ for all $x \in \mathbb{R}$
$\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}, \quad$ for $x \in(-1,1]$	$\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \quad$ for $\|x\| \leq 1$
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}, \quad$ for $\|x-a\|<R$	$(1+x)^{m}=\sum_{n=0}^{\infty}\binom{m}{n} x^{n}, \quad$ for $\|x\|<1$

1) (10 pts.) (a) Determine whether the sequence converges or diverges:

$$
a_{n}=\frac{(2 n-1)!}{(2 n+1)!} .
$$

(15 pts.) (b) Determine whether the sequence converges or diverges:

$$
a_{n}=\left(1+\frac{2}{n}\right)^{n}
$$

Solution:

(a) By using factorial properties we have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{(2 n-1)!}{(2 n+1)!}=\lim _{n \rightarrow \infty} \frac{(2 n-1)!}{(2 n+1)(2 n)(2 n-1)!}=\lim _{n \rightarrow \infty} \frac{1}{2 n(2 n+1)}=0
$$

So the sequence a_{n} converges to 0 .
(b) Use the exponential-logarithm trick for limits:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} e^{\ln \left(\left(1+\frac{2}{x}\right)^{x}\right)} & =\lim _{x \rightarrow \infty} e^{x \ln \left(1+\frac{2}{x}\right)} \\
& =e^{\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{2}{x}\right)}{1 / x}} \\
& =e^{\lim _{x \rightarrow \infty} \frac{2}{1+2 / x}}=e^{2}
\end{aligned}
$$

where we have applied L'Hopital's rule once. So the sequence converges to e^{2}.
2) (10 pts.) Determine whether the series is convergent or divergent:

$$
\sum_{n=1}^{\infty} \sqrt[n]{2}
$$

(15 pts.) (b) Determine whether the series is convergent or divergent:

$$
\sum_{n=1}^{\infty} \frac{1+6^{n}}{7^{n}}
$$

Solution:

(a) Use the Test for Divergence:

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \sqrt[n]{2}=\lim _{n \rightarrow \infty} 2^{1 / n}=2^{0}=1 \neq 0
$$

Since the limit is not equal to zero, the series diverges.
(b) The series can be divided into 2 geometric series:

$$
\sum_{n=1}^{\infty} \frac{1+6^{n}}{7^{n}}=\sum_{n=1}^{\infty} \frac{1}{7^{n}}+\frac{6^{n}}{7^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{7}\right)^{n}+\sum_{n=1}^{\infty}\left(\frac{6}{7}\right)^{n}
$$

and since both geometric series converge because $1 / 7<1$ and $6 / 7<1$, so the original series is convergent.
3) (25 pts .) Determine whether the series is convergent or divergent

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+4}
$$

Solution:

Use the Integral Test. Compare with $f(x)=\frac{1}{x^{2}+4}$.

- $f(x)$ is continuous on $(-\infty, \infty)$ as it is never undefined.
- $f(x)$ is positive as the denominator is positive for any x.
- $f^{\prime}(x)=\frac{-2 x}{\left(x^{2}+4\right)^{2}}<0$ for $x>0 \Rightarrow f(x)$ is decreasing.

Then by computation

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{2}+4} d x & =\left.\lim _{t \rightarrow \infty} \frac{1}{2} \arctan \left(\frac{1}{2} x\right)\right|_{1} ^{t} \\
& =\frac{1}{2} \lim _{t \rightarrow \infty} \arctan \left(\frac{1}{2} t\right)-\arctan \left(\frac{1}{2}\right) \\
& =\frac{\pi}{2}-\arctan \left(\frac{1}{2}\right)
\end{aligned}
$$

So the series is convergent by Integral Test.
4) (25 pts.) Determine whether the series is convergent or divergent

$$
\sum_{n=1}^{\infty} \frac{n+5}{\sqrt[3]{n^{7}+n^{2}}}
$$

Solution:

Use the Limit Comparison Test with $b_{n}=\frac{n}{\sqrt[3]{n^{7}}}=\frac{n}{n^{7 / 3}}=\frac{1}{n^{4 / 3}}$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n+5}{\sqrt[3]{n^{7}+n^{2}}} \cdot \frac{n^{4 / 3}}{1} & =\lim _{n \rightarrow \infty} \frac{n^{7 / 3}+5 n^{4 / 3}}{\sqrt[3]{n^{7}+n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{7 / 3}+5 n^{4 / 3}}{\sqrt[3]{n^{7}+n^{2}}} \cdot \frac{1}{\frac{1}{n^{7 / 3}}} \frac{1}{n^{7 / 3}} \\
& =\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{\sqrt{1+\frac{1}{n^{5}}}} \\
& =1<\infty
\end{aligned}
$$

Therefore, since the limit is positive and finite, and the series $\sum \frac{1}{n^{4 / 3}}$ is a convergent p-series, the original series converges by Limit Comparison Test.
5) (15 pts.) (a) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=1}^{\infty} \frac{2^{n} n!}{(n+2)!}
$$

(10 pts.) (b) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{4 n}}
$$

Solution:

(a) Use the Ratio Test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{2^{n+1}(n+1)!}{(n+3)} \cdot \frac{(n+2)!}{2^{n} n!} \\
& =\lim _{n \rightarrow \infty} \frac{(n+2)!(n+1)!}{(n+3)!n!} \cdot \frac{2^{n+1}}{2^{n}} \\
& =\lim _{n \rightarrow \infty} 2 \frac{n+1}{n+3}=2>1
\end{aligned}
$$

So the series is divergent by the Ratio Test.
(b) Use the Root Test:
$\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(\frac{(n!)^{n}}{n^{4 n}}\right)^{1 / n}=\lim _{n \rightarrow \infty} \frac{n!}{n^{4}}=\lim _{n \rightarrow \infty} \frac{n(n-1)(n-2)(n-3)(n-4) \ldots}{n \cdot n \cdot n \cdot n}=\infty$
So the series diverges by the Root Test.
6) (25 pts.) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{n^{n}}{n!}
$$

Solution:

Check absolute convergence: Take absolute value:

$$
\sum_{n=2}^{\infty}\left|(-1)^{n} \frac{n^{n}}{n!}\right|=\sum_{n=2}^{\infty} \frac{n^{n}}{n!}
$$

Now do comparison

$$
\frac{n^{n}}{n!}=\frac{n \cdot n \cdot n \cdot \ldots \cdot n}{1 \cdot 2 \cdot 3 \cdot \ldots \cdot n} \geq n \quad \Rightarrow \quad \lim _{n \rightarrow \infty} n=\infty<\lim _{n \rightarrow \infty} \frac{n^{n}}{n!}
$$

Which implies that the series is divergent. Therefore, the series does not converge absolutely. Now apply the Test for Divergence to the original series,

$$
\lim _{n \rightarrow \infty} \frac{n^{n}}{n!}=\infty
$$

by using the $\frac{a_{n+1}}{a_{n}}$ trick (see the Notes!). Therefore, the original series diverges by Test for Divergence.
7) (25 pts .) Find the radius of convergence and interval of convergence for the following power series:

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{2 n+1}
$$

Solution:

Use the Ratio Test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|(-1)^{n+1} \frac{(x-3)^{n+1}}{2(n+1)+1} \cdot \frac{2 n+1}{(-1)^{n}(x-3)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}|x-3| \cdot \frac{2 n+1}{2 n+3} \\
& =|x-3| \lim _{n \rightarrow \infty} \frac{2 n+1}{2 n+3}=|x-3| .
\end{aligned}
$$

From the Ratio Test, if the limit is less than 1 , the series converges, so we have $|x-3|<1$, so $R=1$. Solving the inequality, we have that the tentative interval of convergence is $2<x<4$. Now we check the endpoints.
$x=2 \Rightarrow \sum_{n=0}^{\infty}(-1)^{n} \frac{(-1)^{n}}{2 n+1}=\sum_{n=0}^{\infty} \frac{1}{2 n+1} \quad \Rightarrow \quad$ divergent by Comparison Test $\sum 1 / n$
$x=4 \quad \Rightarrow \quad \sum_{n=0}^{\infty}(-1)^{n} \frac{1^{n}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \quad \Rightarrow \quad$ cond. convergent by Alt. Series Test
Therefore, the interval convergence is $(2,4]$.
8) Find the sum of the following series:
(5 pts .)
(a) $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$
(5 pts.)
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{3}^{2 n+1}}{2 n+1}$
(10 pts.)
(c) $\sum_{n=1}^{\infty}\left(-1^{n}\right) x^{2 n}$

Solution:

(a) Use Formula 1, Column 1 from Table:

$$
\sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{1}{2}\right)^{n-1}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1
$$

Or use the geometric series formula $\sum a r^{n}=\frac{a}{1-r}$

$$
\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{1}{1-\frac{1}{2}}=2
$$

(b) Use Formula 3, Column 2 from Table:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{3}^{2 n+1}}{2 n+1}=\arctan (\sqrt{3})=\frac{\pi}{3}
$$

(c) Use Formula 3, Column 2 from Table:

$$
\begin{aligned}
\arctan (x) & =\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \\
\frac{d}{d x} \arctan (x) & =\frac{d}{d x} \sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \\
& =\sum_{n=1}^{\infty}(-1)^{n} x^{2 n} \\
\frac{1}{1+x^{2}} & =\sum_{n=1}^{\infty}(-1)^{n} x^{2 n}
\end{aligned}
$$

Or do a substitution of $-x^{2}$ into Formula 1, Column 1 to get the same result.
9) (20 pts.) (a) Compute the following integral using Taylor series.

$$
\int \arctan \left(x^{2}\right) d x
$$

(5 pts.) (b) Find the Taylor series centered at $a=\frac{\pi}{2}$ for

$$
f(x)=\sin (x)
$$

Solution:

(a) We know from the table on the front

$$
\begin{aligned}
\arctan (x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \\
\arctan \left(x^{2}\right) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{2}\right)^{2 n+1}}{2 n+1} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{2 n+1} \\
\int \arctan \left(x^{2}\right) d x & =\int \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{2 n+1} d x \\
& =\sum_{n=0}^{\infty}(-1)^{n} \int \frac{x^{4 n+2}}{2 n+1} d x \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+3}}{(4 n+3)(2 n+1)}
\end{aligned}
$$

(b) We know from the table on the front

$$
\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

By using the derivatives and the definition and computing $f^{(n)}(a)$, all of the even terms stay and the odds are zero, so we get

$$
\sin (x)=\sum_{n=1}^{\infty}(-1)^{n} \frac{\left(x-\frac{\pi}{2}\right)^{2 n}}{(2 n)!}
$$

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK

