Name:	Score: / 100
Student ID:	

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

	1	2	3	4	5	Total
\checkmark						
Score						
Pts. Possible	25	25	25	25	25	110

INSTRUCTIONS FOR STUDENTS

- You can use both sides of the paper for your solution. This is an 4 question exam.
- Students have 50 minutes to complete the exam.
- The test will be out of 100 points (4 questions). You may attempt a 5^{th} question, which will have a maximum of 10 possible points. The highest possible score is therefore 110 points.
- In the above table, the row with the ✓, is for you to keep track of the problems you are attempting/completing.
- You may complete parts of problems, as partial credit will be given based on correctness, completeness, and ideas that are leading to the correct solutions.
- PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit.
- No notes, textbooks, phones, calculators, etc. are allowed for the exam.
- The last page of the test can be used for scratch work.

GOOD LUCK!

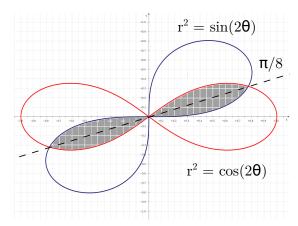
1) $(25 \mathrm{\ pts.})$ Determine if the integral is convergent or divergent. If it converges, compute the integral:

$$\int_{1}^{\infty} \frac{x}{\sqrt{x^6 + 1}} \ dx$$

2) (20 pts.) (a) Eliminate the parameter in the for the following parametric equation $x=9\cos(t)+4 \quad y=9\sin(t)+1$

(5 pts.) (b) Identify the type of graph from your result in part (a).

3) Consider the parametric defined as: $x = 4 + t^2$, $y = t^2 + t^3$ (10 pts.) (a) Compute $\frac{dy}{dx}$. (10 pts.) (b) Compute $\frac{d^2y}{dx^2}$. (5 pts.) (c) For which values of t is the curve concave upward?


- 4) (10 pts.) (a) Consider the polar curve $r=2\sin(\theta)$. Find the slope of the tangent line to the curve at the point $\theta=\frac{\pi}{6}$. (10 pts.) (b) Consider the polar curve $r=1+\cos(\theta)$. Find the values of θ where the tangent line is vertical for $0 \le \theta < 2\pi$.

5) (25 pts.) Find the area of the region that lies inside the petals (the region is shaded in the labeled plot below).

Hint: Use the symmetry at $\frac{\pi}{8}$ to simplify the integral. How many pieces are there?

$$r^2 = \cos(2\theta)$$

$$r^2 = \cos(2\theta)$$
$$r^2 = \sin(2\theta)$$

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK