MATH 009C - Summer 2017

Quiz 2: July 6, 2017

1. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. For what values of t is the curve concave up?

 $x = 2\sin(t), \quad y = 3\cos(t), \quad 0 < t < 2\pi$

2. Compute the length of the curve defined by the following parametric equations:

 $x = e^t \cos(t)$ $y = e^t \sin(t)$ for $0 \le t \le 2\pi$

3. Find the surface area of the solid you get by rotating the following parametric curve around the x-axis for $-2 \le t \le 0$:

$$x = 4t^2 - 1 \qquad \qquad y = 3 - 2t$$

4. Find the slope of the tangent line to the given polar curve at the specified angle θ :

$$r = 2\sin(\theta)$$
 $\theta = \frac{\pi}{6}$