MATH 009C - Summer 2017

Quiz 3: July 11, 2017

1. Find the area of one petal of the polar rose given by:

$$
r=2 \sin (2 \theta)
$$

Hint: The identity $\sin ^{2}(\theta)=\frac{1}{2}(1-\cos (2 \theta))$ should prove useful.

Solution: Note that the curve starts at the origin $(0,0)$, and then at $\theta=\pi / 4$, the radius is equal to 1 , so the coordinate is $(1, \pi / 4)$ in the first quadrant. Then, for $\theta=\pi / 2$, the graph is back to the origin $(0,0)$. So from $\theta=0$ to $\theta=\pi / 2$, the petal in the first quadrant is traced out. Now we can compute the area of the first petal:

$$
\begin{aligned}
\int_{a}^{b} \frac{1}{2}(f(\theta))^{2} d \theta & =\int_{0}^{\frac{\pi}{2}} \frac{1}{2}(2 \sin (2 \theta))^{2} d \theta \\
& =\int_{0}^{\frac{\pi}{2}} 2 \sin ^{2}(2 \theta) d \theta \\
& =\int_{0}^{\frac{\pi}{2}}(1-\cos (2 \theta)) d \theta \\
& =\left[\theta-\frac{1}{2} \sin (2 \theta)\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{2}
\end{aligned}
$$

2. Find the area of the region that lies outside the circle and inside the polar rose (the region is shaded in the labeled plot below). Hint: The identity $\sin ^{2}(\theta)=\frac{1}{2}(1-\cos (2 \theta))$, $\sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}$, and $\sin \left(\frac{2 \pi}{3}\right)=-\frac{\sqrt{3}}{2}$ should prove useful.

$$
r=2 \sin (\theta) \quad r=2 \sin (2 \theta)
$$

Solution:

Find the intersection points first! We solve the following:

$$
\begin{aligned}
& 2 \sin (\theta)=2 \sin (2 \theta) \\
& 2 \sin (\theta)=4 \sin (\theta) \cos (\theta) \\
& 2 \sin (\theta) \cos (\theta)-\sin (\theta)=0 \\
& \sin (\theta)(2 \cos (\theta)-1)=0 \\
& \sin (\theta)=0 \quad \text { and } \quad \cos (\theta)=\frac{1}{2} \\
& \Rightarrow \quad \theta=0, \pi, \frac{\pi}{3}, \frac{5 \pi}{3}
\end{aligned}
$$

Now, we can find the area of the shaded region on the left, and multiply by 2 due to symmetry. The "outside" region is the polar rose, and the "inside" region is the circle. So we integrate only to the first intersection point, ie. 0 to $\frac{\pi}{3}$. So we have

$$
\begin{aligned}
A & =2 \int_{a}^{b} \frac{1}{2}\left(f(\theta)^{2}-g(\theta)^{2}\right) d \theta=2 \int_{0}^{\frac{\pi}{3}} \frac{1}{2}\left((2 \sin (2 \theta))^{2}-(2 \sin (\theta))^{2}\right) d \theta \\
& =4 \int_{0}^{\frac{\pi}{3}}\left(\sin ^{2}(2 \theta)-\sin ^{2}(\theta)\right) d \theta \\
& =4 \int_{0}^{\frac{\pi}{3}}\left(\left(\frac{1}{2}(1-\cos (4 \theta))\right)-\left(\frac{1}{2}(1-\cos (2 \theta))\right)\right) d \theta \\
& =4 \int_{0}^{\frac{\pi}{3}}(\cos (2 \theta)-\cos (4 \theta)) d \theta \\
& =4\left[\frac{1}{2} \sin (2 \theta)-\frac{1}{4} \sin (4 \theta)\right]_{0}^{\frac{\pi}{3}}=\frac{3 \sqrt{3}}{2}
\end{aligned}
$$

