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MATH 009C - Summer 2017
Quiz 4: July 18, 2017

1. Determine whether the sequence converges or diverges. If it converges, find its limit.
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Solution: Use direct computation of limits for (a) and (b). For (c), use inequalities.

(a) By direct computation and L’Hopital’s Rule
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(b) By direct computation and substitution © = —, we have
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Where the inequality follows from the fact that the terms from n = 2 to the (n — 1)
term multiplied together must be greater than or equal to 1/2, since the first is 1/2; and
the subsequent fractions are all bigger than 1. Therefore the sequence is greater than
n/4, which is divergent, so then a, is divergent.

Please, show all work.



2. Find the general term a,, of the sequence:
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Solution: We will assume all series start with n = 1, and the element a.

(a) The numerator is always 1, and the denominator is all the positive odd numbers
starting at one. Odd numbers are usually represented by 2n + 1, but since the first value
of denominator is 1 for n = 1, we have the denominator is 2n — 1. So,
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(b) There is only a numerator. We can see that the difference between each element is
5. This can be described as a recursive sequence

a; = 2 Qp = Qp—1+ 5 for n>2
The series can also be written in terms of an arithmetic sequence

an = a1+ (n—1)d
=2+5(n-1)
=5n—3

(c) This sequence is geometric, and alters signs. Since the sequence alternates
+,—,+,—,... we will have an (—1)"™! term. The sequence in the numerator is
1,2,4,8, ..., which is powers of 2, hence 2"~!. The bottom is powers of 3, so we have
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Please, show all work.



