MATH 009C - Summer 2017

Quiz 4: July 18, 2017

1. Determine whether the sequence converges or diverges. If it converges, find its limit.
(a) $\quad a_{n}=n^{2} e^{-n}$
(b) $\quad a_{n}=n \sin \left(\frac{1}{n}\right)$
(c) $\quad a_{n}=\frac{n!}{2^{n}}$

Solution: Use direct computation of limits for (a) and (b). For (c), use inequalities.
(a) By direct computation and L'Hopital's Rule

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} n^{2} e^{-n}=\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0 \quad \text { convergent }
\end{aligned}
$$

(b) By direct computation and substitution $u=\frac{1}{n}$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} n \sin \left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}} \\
& =\lim _{u \rightarrow 0} \frac{\sin (u)}{u}=1 \quad \text { convergent }
\end{aligned}
$$

(c) $a_{n}=\frac{n!}{2^{n}}=\frac{1}{2} \cdot \frac{2}{2} \cdot \frac{3}{2} \cdot \frac{4}{2} \cdot \ldots \cdot \frac{(n-1)}{2} \cdot \frac{n}{2} \geq \frac{1}{2} \cdot \frac{n}{2}=\frac{n}{4} \rightarrow \infty \quad$ as $\quad n \rightarrow \infty$

Where the inequality follows from the fact that the terms from $n=2$ to the $(n-1)^{\text {st }}$ term multiplied together must be greater than or equal to $1 / 2$, since the first is $1 / 2$, and the subsequent fractions are all bigger than 1 . Therefore the sequence is greater than $n / 4$, which is divergent, so then a_{n} is divergent.

Please, show all work.

2. Find the general term a_{n} of the sequence:
(a)
$\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\right\}$
$\{2,7,12,17\}$
(c)
$\left\{1,-\frac{2}{3}, \frac{4}{9},-\frac{8}{27}, \ldots\right\}$

Solution: We will assume all series start with $n=1$, and the element a_{1}.
(a) The numerator is always 1 , and the denominator is all the positive odd numbers starting at one. Odd numbers are usually represented by $2 n+1$, but since the first value of denominator is 1 for $n=1$, we have the denominator is $2 n-1$. So,

$$
a_{n}=\frac{1}{2 n-1}
$$

(b) There is only a numerator. We can see that the difference between each element is 5. This can be described as a recursive sequence

$$
a_{1}=2 \quad a_{n}=a_{n-1}+5 \quad \text { for } n \geq 2
$$

The series can also be written in terms of an arithmetic sequence

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d \\
& =2+5(n-1) \\
& =5 n-3
\end{aligned}
$$

(c) This sequence is geometric, and alters signs. Since the sequence alternates ,,,,$+-+- \ldots$ we will have an $(-1)^{n+1}$ term. The sequence in the numerator is $1,2,4,8, \ldots$, which is powers of 2 , hence 2^{n-1}. The bottom is powers of 3 , so we have

$$
\begin{aligned}
a_{n} & =(-1)^{n+1} \frac{2^{n-1}}{3^{n-1}} \\
& =(-1)^{n+1}\left(\frac{2}{3}\right)^{n-1}
\end{aligned}
$$

