MATH 009C - Summer 2017

Quiz 5: July 25, 2017

1. Determine whether the series converges or diverges. If it converges, find its sum. (Show all the steps!)

$$
\sum_{n=1}^{\infty}\left(\frac{1}{e^{n}}+\frac{1}{n(n+1)}\right)
$$

Solution: First note the the first term is a geometric series, and the second is a telescoping series. We can only break the series into two parts if both of the series are convergent. So we deal with them separately. First the geometric series

$$
\sum_{n=1}^{\infty} \frac{1}{e^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{e}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{e}\left(\frac{1}{e}\right)^{n-1}=\frac{1 / e}{1-1 / e}=\frac{1}{e-1} \quad \text { convergent since } \frac{1}{e}<1
$$

The second series requires that we use the definition of a series, a limit of partial sums. The second series has the general term $a_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$, then the partial sum s_{n} is

$$
\begin{aligned}
s_{n} & =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{n-1}-\frac{1}{n}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1}
\end{aligned}
$$

Then by taking the limit of partial sums, we have

$$
\lim _{n \rightarrow \infty} 1-\frac{1}{n+1}=1
$$

So since both series are convergent, we can break the sum, and we have already computed the sums individually, hence

$$
\sum_{n=1}^{\infty}\left(\frac{1}{e^{n}}+\frac{1}{n(n+1)}\right)=\sum_{n=1}^{\infty} \frac{1}{e^{n}}+\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\frac{1}{e-1}+1=\frac{e}{e-1}
$$

2. Determine whether the series converges or diverges.

$$
\begin{array}{ll}
\text { (a) } & \sum_{n=1}^{\infty} n e^{-n} \\
\text { (b) } & \sum_{n=1}^{\infty} \frac{\arctan (n)}{n^{3}} \\
\text { (c) } & \sum_{n=1}^{\infty} \frac{1+5^{n}}{1+2^{n}}
\end{array}
$$

Solution:

(a) Use the integral test with $f(x)=x e^{-x}$. The function $f(x)$ needs to be positive for $x>1$. Exponentials are always positive, and $x>0$ since we are only considering $x>1$. The function $f(x)$ is continuous since it is the product of continuous functions. Lastly, the derivative is decreasing

$$
f^{\prime}(x)=e^{-x}+(-1) x e^{-x}=e^{-x}(1-x)<0 \quad \text { for } x>1 .
$$

Therefore, we apply the integral test and integrate the improper integral

$$
\begin{aligned}
\int_{1}^{\infty} x e^{-x} & =\lim _{t \rightarrow \infty} \int_{1}^{t} x e^{-x} d x \\
& =\lim _{t \rightarrow \infty}-\left.e^{-x}(x+1)\right|_{1} ^{t} \quad \text { (integration by parts) } \\
& =-\lim _{t \rightarrow \infty} e^{-t}(t+1)+\frac{2}{3} \\
& =0+\frac{2}{e}=\frac{2}{e} \quad \text { convergent }
\end{aligned}
$$

(b) Apply the Comparison Test with $b_{n}=\frac{1}{n^{3}}$, which is a convergent p-series since $p>1$. Recall, that arctangent is bounded above, ie. $\arctan (x)<\frac{\pi}{2}$, therefore, we have that

$$
\sum_{n=1}^{\infty} \frac{\arctan (x)}{n^{3}} \leq \sum_{n=1}^{\infty} \frac{\pi / 2}{n^{3}}=\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n^{3}}<\infty
$$

Therefore, by Comparison Test, the original series is convergent.
(c) Compute the limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1+5^{n}}{1+2^{n}} & =\lim _{n \rightarrow \infty} \frac{1+5^{n}}{1+2^{n}} \cdot \frac{\frac{1}{5^{n}}}{\frac{1}{5^{n}}} \\
& =\frac{0+1}{0+0}=\infty
\end{aligned}
$$

So by Test for Divergence, the series is divergent.

