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MATH 009C - Summer 2017
Quiz 5: July 25, 2017

1. Determine whether the series converges or diverges. If it converges, find its sum. (Show
all the steps!)
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Solution: First note the the first term is a geometric series, and the second is a
telescoping series. We can only break the series into two parts if both of the series are
convergent. So we deal with them separately. First the geometric series
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The second series requires that we use the definition of a series a limit of partial sums.

The second series has the general term a,, = m = 1 +1’ then the partial sum s, is
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Then by taking the limit of partial sums, we have
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So since both series are convergent, we can break the sum, and we have already
computed the sums individually, hence
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Please, show all work.



2. Determine whether the series converges or diverges.
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Solution:

(a) Use the integral test with f(x) = xe™®. The function f(z) needs to be positive for
x > 1. Exponentials are always positive, and x > 0 since we are only considering = > 1.
The function f(z) is continuous since it is the product of continuous functions. Lastly,
the derivative is decreasing

fx)=e"+(-Dze*=e"(1—2)<0  forz>1.

Therefore, we apply the integral test and integrate the improper integral
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(b) Apply the Comparison Test with b,, = —, which is a convergent p-series since p > 1.
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Recall, that arctangent is bounded above, ie. arctan(z) < 7, therefore, we have that
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Therefore, by Comparison Test, the original series is convergent.

(c¢) Compute the limit
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So by Test for Divergence, the series is divergent.

Please, show all work.



