MATH 009C - Summer 2017

Quiz 6: August 1, 2017

1. Determine if the series is absolutely convergent, conditionally convergent, or divergent.

$$
\sum_{n=1}^{\infty} \frac{(2 n)!}{2^{n}(n!)}
$$

Solution: Note the factorials. Use the Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{(2(n+1))!}{2^{n+1}(n+1)!} \cdot \frac{2^{n}(n!)}{(2 n)!} \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1)((2 n)!)}{(2 n)!} \cdot \frac{2^{n}}{2^{n+1}} \cdot \frac{n!}{(n+1)(n!)} \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+1)(2 n+1)}{(2 n+2)} \\
& =\lim _{n \rightarrow \infty} 2 n+1 \\
& =\infty
\end{aligned}
$$

Therefore, by the Ratio Test, the series is divergent.
2. Determine if the series is absolutely convergent, conditionally convergent, or divergent.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}
$$

Solution: For series that are Alternating Series, check absolute convergence first. Using the fact that $\ln (n)<n$ for all $n \geq 1$, we have

$$
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n+1}}{\ln (n)}\right|=\sum_{n=1}^{\infty} \frac{1}{\ln (n)}>\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

where we used the Comparison Test in the last inequality. So the series is not absolutely convergent. Then we apply the Alternating Series Test. We will show that the limit of the b_{n} is zero, and the sequence is decreasing. Limit:

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{\ln (n)}=0
$$

Show decreasing:

$$
f(x)=\frac{1}{\ln (x)} \quad \Rightarrow f^{\prime}(x)=-\frac{1}{x(\ln (x))^{2}}
$$

which is negative for $x>0$, hence for $x>1$. So by Alternating Series Test is convergent. But recall, that the series was not absolutely convergent, therefore the series is conditionally convergent.

