Math 009C-§9.5, Lecture Problem \# 1

Worked Solution

1. Let $r=1+\sin (\theta)$ for $0 \leq \theta \leq 2 \pi$. (a) Find the tangent line at the value of $\theta=\frac{\pi}{4}$.

Find the values of θ where there is a horizontal or vertical tangent line.
Solution: (a) First we compute the derivative and plug in $\theta=\pi / 4$ to find the slope.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)}{\frac{d r}{d \theta} \cos (\theta)-r \sin (\theta)} \\
& =\frac{\cos (\theta) \sin (\theta)+[1+\sin (\theta)] \cos (\theta)}{\cos ^{2}(\theta)-[1+\sin (\theta)] \sin (\theta)} \\
& =\frac{2 \cos (\theta) \sin (\theta)+\cos (\theta)}{\cos ^{2}(\theta)-\sin (\theta)-\sin ^{2}(\theta)} \\
\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{4}} & =\frac{2 \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}}{\left(\frac{\sqrt{2}}{2}\right)^{2}-\frac{\sqrt{2}}{2}-\left(\frac{\sqrt{2}}{2}\right)^{2}}=\frac{1+\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}}=-\frac{2}{\sqrt{2}}-1=-\sqrt{2}-1
\end{aligned}
$$

Now we find the values of the x and y coordinates of the points using the original polar equation.

$$
\begin{aligned}
& y-y_{0}=\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{4}}\left(x-x_{0}\right) \\
& \Rightarrow y_{0}=r \sin (\theta)=[1+\sin (\theta)] \sin (\theta)=\sin (\theta)+\sin ^{2}(\theta)=\frac{\sqrt{2}}{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}=\frac{1}{2}(\sqrt{2}+1) \\
& \Rightarrow x_{0}=r \cos (\theta)=[1+\sin (\theta)] \cos (\theta)=\cos (\theta)+\cos (\theta) \sin (\theta)=\frac{1}{2}(\sqrt{2}+1) \\
& \Rightarrow\left(y-\left(\frac{1}{2}(\sqrt{2}+1)\right)\right)=(-\sqrt{2}-1)\left(x-\left(\frac{1}{2}(\sqrt{2}+1)\right)\right)
\end{aligned}
$$

(b) For the horizontal tangent lines, set the numerator of the derivative equal to zero, and solve for θ.

$$
\begin{aligned}
& \frac{d y}{d \theta}=0 \\
& 2 \cos (\theta) \sin (\theta)+\cos (\theta)=0 \\
& \cos (\theta)(2 \sin (\theta)+1)=0 \\
& \cos (\theta)=0 \quad \text { and } \quad 2 \sin (\theta)+1=0 \text { or } \sin (\theta)=-\frac{1}{2} \\
& \theta=\frac{\pi}{2}, \frac{3 \pi}{2} \quad \text { and } \quad \theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}
\end{aligned}
$$

For the vertical tangent lines, set the denominator of the derivative equal to zero, and
solve for θ. We also need to use the identity $\cos ^{2}(t)=1-\sin ^{2}(t)$.

$$
\begin{aligned}
& \frac{d x}{d \theta}=0 \\
& \cos ^{2}(\theta)-\sin (\theta)-\sin ^{2}(\theta)=0 \\
& 1-\sin ^{2}(t)-\sin (\theta)-\sin ^{2}(\theta)=0 \\
& 2 \sin ^{2}(\theta)+\sin (\theta)-1=0 \\
&(2 \sin (\theta)-1)(\sin (\theta)+1)=0 \\
& \sin (\theta)+1=0 \text { and } \\
& \sin (\theta)=-1 \quad \\
& 2 \sin (\theta)-1=0 \\
& \theta \text { and } \\
& \sin (\theta)=\frac{3 \pi}{2} \quad \text { and } \quad \theta=\frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

Note that at $\theta=\frac{3 \pi}{2}$, we have the indeterminate form $\frac{0}{0}$. Thus we have to take the limit. Using L'Hopital's Rule, and computing the right and left limits:

$$
\begin{aligned}
\lim _{\theta \rightarrow\left(\frac{3 \pi}{2}\right)^{+}}-\frac{2 \cos (\theta) \sin (\theta)+\cos (\theta)}{2 \sin ^{2}(\theta)+\sin (\theta)-1} & =\lim _{\theta \rightarrow\left(\frac{3 \pi}{2}\right)^{+}}-\frac{-2 \sin ^{2}(\theta)+2 \cos ^{2}(\theta)-\sin (\theta)}{4 \sin (\theta) \cos (\theta)+\cos (\theta)} \\
& =\frac{-2(-1)^{2}+2\left(0^{-}\right)^{2}-(-1)}{4(-1)\left(0^{-}\right)+0^{-}}=\frac{-1}{0^{+}}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{\theta \rightarrow\left(\frac{3 \pi}{2}\right)^{-}} \frac{2 \cos (\theta) \sin (\theta)+\cos (\theta)}{2 \sin ^{2}(\theta)+\sin (\theta)-1} & =\lim _{\theta \rightarrow\left(\frac{3 \pi}{2}\right)^{-}} \frac{-2 \sin ^{2}(\theta)+2 \cos ^{2}(\theta)-\sin (\theta)}{4 \sin (\theta) \cos (\theta)+\cos (\theta)} \\
& =\frac{-2(-1)^{2}+2\left(0^{+}\right)^{2}-(-1)}{4(-1)\left(0^{+}\right)+0^{+}}=\frac{-1}{0^{-}}=\infty
\end{aligned}
$$

The 0^{+}and 0^{-}denote that the value is a very small positive or negative number, respectively, that is approaching zero. This allows us to get the signs on the infinities. Therefore, at $\theta=\frac{3 \pi}{2}$, there is neither a vertical nor horizontal tangent line, because the limit does not exists, because the limit is two difference values from the left and right hand sides.

