MATH 146 B
HL\# 3 Solutions
Section $5.1=2,3,7,25,26$
Section 5,2*25,26
Section 5,3\# 2, 6,8
Section 5.1
Find the radius of convergence for each power series.
2) The series is $\sum_{n=0}^{\infty} \frac{n}{2^{n}} x^{n}$. Use Ratiotest.

$$
\begin{aligned}
& \text { The series is } \sum_{n=0} \begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{n+1}{2^{n}} x^{n+1}}{\frac{\frac{n}{n+1}}{n^{n}} x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{n} \cdot \frac{2^{n}}{2^{n+1}} \cdot\left|\frac{x^{n+1}}{x^{n}}\right| \\
& =\frac{|x|}{2} \lim _{n \rightarrow \infty} \frac{n+1}{n}=\frac{|x|}{2}<1 \text { by Ratio Test } \\
& \Rightarrow|x|<2 \Rightarrow R=2
\end{aligned}
\end{aligned}
$$

3) The series is $\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}$. Use Ratio test.

$$
\begin{aligned}
& \text { The series is } \sum_{n=0}^{n!} x^{2(n+1)} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \left\lvert\, \frac{\frac{x^{(n+1)!}}{\frac{x^{2 n}}{n^{2}}} \left\lvert\,=\lim _{n \rightarrow \infty} \frac{n!}{(n+1)!} \cdot \frac{|x|^{2 n+2}}{|x|^{2 n}}\right.}{|x|^{2}=0<1 \text { for all } x \text { by } k}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\lim _{n \rightarrow \infty} \frac{\frac{x^{2 n}}{n^{n}}}{}={ }_{n \rightarrow \infty}(n+1) .1 \lambda \right\rvert\, \text { for all } \times \text { by Ratiotest. } \\
& =\lim _{n \rightarrow \infty} \frac{|x|^{2}}{n+1}=0<1 \\
& \hline R=\infty
\end{aligned}
$$

$$
\Rightarrow R=\infty
$$

7) The series is $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}(x+2)^{n}}{3^{n}}$. Use Ratio Test.

$$
\begin{aligned}
& \text { 7) The series is } \sum_{n=1} \frac{\frac{(-1) n(x+21}{3^{n}}}{} \begin{array}{l}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(n+1)^{2}(x+2)^{n+1}}{3^{n+1}} \cdot \frac{3^{n}}{(-1)^{n} n^{2}(x+2)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}} \cdot \frac{3^{n}}{3^{n+1}} \cdot \frac{|x+2|^{n+1}}{|x+2|^{n}} \\
=\frac{|x+2|}{3^{2}} \lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}}=\frac{|x+2|}{3}<1 \underset{\text { by Ratio Test }}{\Rightarrow}|x+2|<3 \Rightarrow R=3
\end{array}
\end{aligned}
$$

Rewrite the given expression as a sum whose generic tern involves x^{n}.

$$
\text { 25) } \sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1}
$$

I thank the indices should all be n, not and k, to get solution, so

$$
\begin{aligned}
& \text { 工thonk the indices shaun } \\
& \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
= & \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=1}^{\infty} n a_{n} x^{n} \\
= & \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} n a_{n} x^{n} \\
= & \sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+n a_{n}\right] x^{n}
\end{aligned}
$$

* add 2 inside series 1 , and subtract 2 on summation to re-index
* multiply x into second series
* First series same. Second series canstact at $n=0$ Since the $n=0$ term is just 0
* combine series, since both startat $n=0$, and have x^{n}. Factor.

26)

Section 5.2-
25) Plot several pastialsums in a series solution of the given IUP.
about the point $x=0$.

$$
\begin{aligned}
& x=0 \\
& y^{\prime \prime}+x y^{\prime}+2 y=0, \quad y(0)=0, y^{\prime}(0)=1
\end{aligned}
$$

Solution: We will routinely use the following substitutions

$$
\begin{aligned}
& \text { We will routinely use the following subsind } \sum_{n=0}^{\infty} n a_{n} x^{n-1}, y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \text { 也 } \\
& y=\sum_{n=0}^{\infty} a_{n} x^{n}, y^{\prime}=\sum_{n=1}
\end{aligned}
$$

Plugging (\#) into the ODE

$$
\begin{aligned}
& \text { Plugging (\#) into the ODE } \\
& \Rightarrow \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=1}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0 \\
& \Rightarrow 2\left(a_{2}+a_{0}\right)+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}+(n+2) a_{n}\right] x^{n}=0 \\
& \Rightarrow 2\left(a_{2}+a_{0}\right)=0 \text { and }(n+2)(n+1) a_{n+2}+(n+2) a_{n}=0 \\
& a_{n+2}=\frac{-a_{n}}{n+1} \quad a_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 2\left(a_{2}+a_{0}\right)=0 \text { and } a_{n+2}=\frac{-a_{n}}{n+1} \\
& \Rightarrow a_{2}=-a_{0} \quad \text { and } \quad-a_{2}=a_{0}, a_{5}=
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow a_{2}=-a_{0} \quad \text { and } \\
& \Rightarrow a_{3}=-\frac{a_{1}}{2}, a_{4}=\frac{-a_{2}}{3 \cdot 1}=\frac{a_{0}}{3 \cdot 1}, a_{5}=-\frac{a_{3}}{4}=\frac{a_{1}}{4 \cdot 2} \\
& a_{1}=-\frac{a_{4}}{4}=-\frac{a_{0}}{2}, a_{7}=-\frac{a_{5}}{6}=\frac{-}{6}
\end{aligned}
$$

$$
\begin{aligned}
& a_{4}=\frac{-a_{2}}{3 \cdot 1}=\frac{1}{3.1}, a_{5} \\
& a_{6}=\frac{-a_{4}}{5}=-\frac{a_{0}}{5 \cdot 3 \cdot 1}, a_{7}=-\frac{a_{5}}{6}=\frac{-a_{1}}{6 \cdot 4 \cdot 2}
\end{aligned}
$$

$$
\begin{aligned}
& y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x+a_{4} x \\
& y(x)=a_{0}+a_{1} x+\left(-a_{0}\right) x^{2}+\left(-\frac{a_{1}}{2}\right) x^{3}+\left(\frac{a_{0}}{0.1}\right) x^{4}+\left(\frac{a_{1}}{\left.a_{1}\right)} x^{5}+\ldots\right. \\
& y(0)=0 \Rightarrow a_{0}=0, y^{\prime}(0)=1 \Rightarrow a_{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& x)=a_{0}+a_{1} x+\left(-a_{0}\right) x^{2}+\left(-\frac{-a}{2}\right)^{x}+(3 .)^{\prime} \\
& y(0)=0 \Rightarrow a_{0}=0, y^{\prime}(0)=1 \Rightarrow a_{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& y(0)= \\
\Rightarrow y(x)= & x-\frac{1}{2} x^{3}+\frac{1}{4 \cdot 2} x^{5}-\frac{1}{6 \cdot 4 \cdot 2} x^{7}+\cdots \\
& \text { see last page for plots. }
\end{aligned}
$$

see last page for plots.
26) Plot several partial sums in a series solution of the given IVP about the point $x=0$.

$$
\begin{aligned}
& \text { IvP about the point } x=0 \\
& \left(4-x^{2}\right) y^{\prime \prime}+2 y=0, y(0)=0, y^{\prime}(0)=1
\end{aligned}
$$

Solution: Plugin x from \#25 into this ODE

$$
\begin{aligned}
& \Rightarrow\left(4-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0 \\
& \Rightarrow \sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{n-2}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0 \\
& \begin{aligned}
& \sum_{n=2}^{\infty} 4(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0 \\
& \Rightarrow
\end{aligned} \\
& \begin{array}{l}
\left(8 a_{2}+2 a_{0}\right)+\left(24 a_{3}+2 a_{1}\right) x+\sum_{n=2}^{\infty}\left[4(n+2)(n+1) a_{n+2}-((n)(n-1)-2) a_{n}\right] x^{n}= \\
4(n+2)(n+1) a_{n+2}-(n(n-1)-2) a_{n}=0
\end{array} \\
& \begin{array}{lll}
\left(8 a_{2}+2 a_{0}\right)+\left(24 a_{3}+2 a_{1}\right) & n=2 \\
24 a_{3}+2 a_{1}=0 & 4(n+2)(n+1) a_{n+2}-(n(n-1)-2) a_{n} \\
\Rightarrow & 8 a_{2}+2 a_{0}=0 & a_{n+2}=\frac{(n(n-1)-2) a_{n}}{4(n+2)(n+1)}=\frac{\left(a_{1}-n\right.}{4(n+2)(n+1)} \\
-a_{0} & a_{3}=\frac{-a_{1}}{12} &
\end{array} \\
& \Rightarrow a_{2}=-\frac{a_{0}}{4} \\
& a_{3}=-\frac{a_{1}}{12} \\
& =\frac{(n-2) x+n+1 a_{n}}{4(n+2)(n+1)}=\frac{(n-2)}{4(n+2)} a_{n} \\
& y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+\cdots \\
& =a_{0}+a_{1} x+\left(-\frac{a_{0}}{4}\right) x^{2}+\left(-\frac{a_{1}}{12}\right) x^{3}+0 \cdot x^{4}+\left(-\frac{a_{1}}{1 \cdot 2 \cdot 20}\right) x^{5}+\cdots \\
& \Rightarrow y_{1}(x)=a_{0}+\left(-\frac{a_{0}}{4}\right) x^{2} \\
& y_{2}(x)=a_{1} x-\frac{a_{1}}{12} x^{3}-\frac{a_{1}}{12 \cdot 20} x^{5} \ldots \\
& y(0)=0 \Rightarrow a_{0}=0 \Rightarrow y_{1}(x)=0 \\
& y^{\prime}(0)=1 \Rightarrow a_{1}=1 \Rightarrow y_{2}(x)=x-\frac{1}{12} x^{3}-\frac{1}{240} x^{5}-\frac{1}{2240} x ? \ldots
\end{aligned}
$$

see lust pages for plots.

Section 5.3
For question 2, it will be helpful to read p. 265, thebattom half of the page. Work the samomethod up to Ign 3 on that page.

Note: given $P(x) y^{\prime \prime}(x)+Q(x) y^{\prime}(x)+R(x) y(x)=0$

$$
\Rightarrow \quad \phi^{\prime}(x)=-\frac{Q(x)}{P(x)} \phi^{\prime}(x)-\frac{R(x)}{P(x)} \phi(x)
$$

2) Determine $\phi^{\prime \prime}\left(x_{0}\right), \phi^{\prime \prime \prime}\left(x_{0}\right), \phi^{(4)}\left(x_{0}\right)$ for the given x_{0} if $y=\phi(x)$ is a solution to the given IUP.

$$
\begin{array}{ll}
\text { to the given IUP. } & y(0)=0 \\
y^{\prime \prime}+\sin (x) y^{\prime}+\cos (x) y=0 & y^{\prime}(0)=1
\end{array}
$$

Solution: $P(x)=1, Q(x)=\sin (x), R(x)=\cos (x)$

$$
\begin{aligned}
& \Rightarrow \phi^{\prime \prime}(x)=-\sin (x) \phi^{\prime}(x)-\cos (x) \phi(x) \\
& \phi^{\prime \prime \prime}(x)=-2 \cos (x) \phi^{\prime}(x)-\sin (x) \phi^{\prime \prime}(x)+\sin (x) \phi(x) \\
& \phi^{(\prime \prime}(x)= \cos (x) \phi(x)+\sin (x) \phi^{\prime}(x)+2 \sin (x) \phi^{\prime}(x)-2 \cos (x) \phi^{\prime \prime}(x) \\
&-\cos (x) \phi^{\prime \prime}(x)-\sin (x) \phi^{\prime \prime \prime}(x) \\
&= \cos (x) \phi(x)+3 \sin (x) \phi^{\prime}(x)-3 \cos (x) \phi^{\prime \prime}(x)-\sin (x) \phi^{\prime \prime \prime}(x) \\
&
\end{aligned}
$$

So, $y(0)=0 \Rightarrow \phi(0)=0$ and $y^{\prime}(0)=1 \Rightarrow \phi^{\prime}(0)=1$
Therefore

$$
\begin{aligned}
& 0=0 \Rightarrow \phi(0)=0 \text { and } y \\
& \phi^{\prime \prime}(0)=-\sin (0) \phi^{\prime}(0)-\cos (0) \phi(0)=0 \\
& \phi^{\prime \prime}(0)=-2 \cos (0) \phi^{\prime}(0)-\sin (0) \phi^{\prime \prime}(0)+\sin (0) \phi(0)=-2 \\
& \phi^{(4)}(0)=\cos (0) \phi(0)+3 \sin (0) \phi^{\prime}(0)-3 \cos (0) \phi^{\prime \prime}(0)-\sin (0) \phi^{\prime \prime \prime}(0)=0 \\
& \Rightarrow \begin{array}{l}
\phi^{\prime \prime}(0)=0 \\
\phi^{\prime \prime}(0)=-2 \\
\phi^{(4)}(0)=0
\end{array}
\end{aligned}
$$

6) Determine lower bound for the radius of convergence of the series solution about the given x_{0} for the ODE

$$
\begin{aligned}
& \text { of the series solution a } \\
& \left(x^{2}-2 x-3\right) y^{\prime \prime}+x y^{\prime}+4 y=0 \quad x_{0}=4, \alpha_{0}=-4, x_{0}=0
\end{aligned}
$$

Solution: From stander form,

$$
\begin{aligned}
& \frac{Q(x)}{P(x)}=\frac{x}{x^{2}-2 x-3}=\frac{x}{(x-3)(x+1)} \quad \text { Singukrities at } \\
& \frac{R(x)}{P(x)}=\frac{4}{(x-3)(x+1)}
\end{aligned}
$$

So for $x_{6}=4$, appear lo the
diagram to the right. We can only expand from $x_{0}=4$ up to 3 before hitting a singularity. For $x_{0}=0$, we can also only expand until we reach $x=-1$, a singukity, and a distance of 1. For $x_{0}=-4$, we expand to $x_{0}=-1$, which is a distance of 3 units. So for

$$
\begin{aligned}
& x_{0}=4 \Rightarrow R=1 \text { is a bound } \\
& x_{0}=0 \Rightarrow R=1 \text { is a bound } \\
& x_{0}=-4 \Rightarrow R=3 \text { is a bound. }
\end{aligned}
$$

8) Same question as 6, but for $x y^{\prime \prime}+y=0, x_{0}=1$

Solution: $\frac{Q(x)}{P(x)}=\frac{0}{x}=0($ if $x \neq 0) \quad \frac{R(x)}{P(x)}=\frac{1}{x} \quad\left\{\begin{array}{c}\text { Singularity } \\ a_{t}+ \\ x=0\end{array}\right.$

The biggest neighborhood we can' draw about $x_{0}=1$, is kea of radius 1 which will reach the singukrity at $x=0$, thus $R=1$ is a bound

Section 5,4
Determine the general solution of the ODE that is valid in any interval not including the singular point.

$$
\text { 3) } x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

Solution: Assume a solution of the form $y=x^{r}$

$$
\begin{aligned}
& \text { Solution: Assume a solution } \\
& \Rightarrow y^{\prime}=r x^{r-1}, y^{\prime \prime}=r(r-1) x^{r-2} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow y^{\prime}=r x^{r-1}, y^{\prime \prime}=r(r-1) x \\
& \Rightarrow x^{2}\left(r(r-1) x^{r-2}\right)-3 x\left(r x^{r-1}\right)+4 x^{r}=0 \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x^{2}\left(r(r-1) x^{r-2}\right)-3 x\left(r x^{r-1}\right)+4 x \\
& \Rightarrow[r(r-1)-3 r+4] x^{r}=0 \Rightarrow\left[r^{2}-4 r+4\right] x^{r}=0 \\
& 2, r-0 \Rightarrow r=2,2 \text { repented roots }
\end{aligned}
$$

$\Rightarrow(r-2)^{2} x^{r}=0 \Rightarrow r=2,2$ repeated roots
general form is $y=\left(c_{1}+c_{2} \ln |x|\right) x^{r}$, so $y(x)=\left(c_{1}+c_{2} \ln |x|\right) x^{2}$
11) $x^{2} y^{\prime \prime}+2 x y^{\prime}+4 y=0$

Solution: Assume a solution of the form $y=x^{r}$

$$
\begin{aligned}
& \text { Solution } \\
& \Rightarrow y^{\prime}=r x^{r-1}, y^{\prime \prime}=r(r-1) x^{r-2} \\
& \Rightarrow x^{2}\left(r(r-1) x^{r-2}\right)+2 \times\left(r x^{r-1}\right)+4 x^{r}=0 \\
& \Rightarrow[r(r-1)+2 r+4] x^{r}=0 \Rightarrow\left[r^{2}+r+4\right] x^{r}=0 \\
& \Rightarrow r^{2}+r+4=0 \Rightarrow r=-\frac{1}{2}(1 \pm i \sqrt{15}) \quad \operatorname{complex} \text { roots. }
\end{aligned}
$$

general form is $y=c_{1} x^{\lambda} \cos (\mu \ln (x))+c_{2} x^{\lambda} \sin (\mu \ln (x)) \quad x>0$ $r=\lambda \pm i \mu$

$$
\Rightarrow y\left(\left.x\left|=c_{1}\right| x\right|^{-1 / 2} \cos \left(\left.\frac{1}{2} \sqrt{15}|n| x \right\rvert\,\right)+c_{2}|x|^{-1 / 2} \sin \left(\frac{\sqrt{15}}{2} \ln |x|\right)\right.
$$

25) Find all singular points of the ODE and determine whether each one is regular or irregular.

$$
(x+2)^{2}(x-1) y^{\prime \prime}+3(x-1) y^{\prime}-2(x+2) y=0
$$

Solution: Look at ratios

$$
\left.\begin{array}{l}
\text { Solution: Cookat ratios } \\
p(x)=\frac{Q(x)}{P(x)}=\frac{3(x-1)}{(x+2)^{2}(x-1)}=\frac{3}{(x+2)^{2}} \\
q(x)=\frac{R(x)}{p(x)}=\frac{-2(x+2)}{(x+2)^{2}(x-1)}=\frac{-2}{(x+2)(x-1)}
\end{array}\right\} \Rightarrow \begin{aligned}
& \text { Singular points } \\
& \text { are at } \\
& x=-2,1
\end{aligned}
$$

For $x=-2$,

$$
\begin{aligned}
& \text { For } x=-2, \\
& \qquad \lim _{x \rightarrow-2}(x+2) p(x)=\lim _{x \rightarrow-2}(x+2) \frac{3}{(x+2)^{2}}=\infty \\
& \Rightarrow x=-2 \text { is an irreguke singukr }
\end{aligned}
$$

$\Rightarrow x=-2$ 13 an irreguke singukr point

For $x=1$

$$
\begin{aligned}
& \text { For } x=1 \\
& \lim _{x \rightarrow 1}(x-1) p(x)=\lim _{x \rightarrow 1} \frac{3(x-1)}{(x+2)^{2}}=0 \\
& \lim _{x \rightarrow 1}(x-1)^{2} q(x)=\lim _{x \rightarrow 1} \frac{-2(x-1)^{2}}{(x+2)(x-1)}=\lim _{x \rightarrow 1} \frac{-2(x-1)}{(x+2)}=0
\end{aligned}
$$

$\Rightarrow x=1$ is a regular singular point.

MATH 146B - Ordinary and Partial Differential Equations II

Plots For Homework 3

All of the plots are created using the file MATH146B_HW3.m. All plots are inserted into the document in landscape format.

Section 5.2, \# 25

Section 5.2, \# 26

