MATH 65B - Spring 2018

Groupwork 10: April 12, 2018

1. Find the general term a_n of the sequence:

(a)
$$\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\}$$

(b) $\{2, 7, 12, 17\}$
(c) $\{1, -\frac{2}{3}, \frac{4}{9}, -\frac{8}{27}, \ldots\}$
(d) $\left\{\sin\left(\frac{\pi}{2}\right), \sin\left(\frac{3\pi}{2}\right), \sin\left(\frac{5\pi}{2}\right), \ldots\right\}$

2. Determine whether the sequence converges or diverges. If it converges, find its limit.

(a)
$$a_n = n \sin\left(\frac{1}{n}\right)$$

(b) $a_n = \left(1 + \frac{2}{n}\right)^n$
(c) $a_n = \frac{n!}{2^n}$

3. Determine whether the series converges or diverges. If it converges, find its sum. You must show all the steps!

$$\sum_{n=1}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n+1)} \right)$$

4. For (a), determine whether the series converges or diverges. For (b), write the repeating decimal as a ratio of integers (ie. a rational number). For (c), determine for which values of x does the series converges.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{e^n}$$

(b) 4.342342342...
(c) $\sum_{n=0}^{\infty} \frac{\cos^n(x)}{2^n}$