MATH 65B - Spring 2018

Groupwork 10: April 12, 2018

1. Find the general term a_{n} of the sequence:
(a)
$\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\right\}$
(b)
$\{2,7,12,17\}$
(c)
$\left\{1,-\frac{2}{3}, \frac{4}{9},-\frac{8}{27}, \ldots\right\}$
(d)

$$
\left\{\sin \left(\frac{\pi}{2}\right), \sin \left(\frac{3 \pi}{2}\right), \sin \left(\frac{5 \pi}{2}\right), \ldots\right\}
$$

Please, show all work.
2. Determine whether the sequence converges or diverges. If it converges, find its limit.
(a)

$$
a_{n}=n \sin \left(\frac{1}{n}\right)
$$

(b)

$$
a_{n}=\left(1+\frac{2}{n}\right)^{n}
$$

(c)

$$
a_{n}=\frac{n!}{2^{n}}
$$

Please, show all work.
3. Determine whether the series converges or diverges. If it converges, find its sum. You must show all the steps!

$$
\sum_{n=1}^{\infty}\left(\frac{1}{e^{n}}+\frac{1}{n(n+1)}\right)
$$

Please, show all work.
4. For (a), determine whether the series converges or diverges. For (b), write the repeating decimal as a ratio of integers (ie. a rational number). For (c), determine for which values of x does the series converges.
(a) $\quad \sum_{n=1}^{\infty} \frac{1}{e^{n}}$
(b) $4.342342342 \ldots$
(c) $\quad \sum_{n=0}^{\infty} \frac{\cos ^{n}(x)}{2^{n}}$

Please, show all work.

