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MATH 65B - Spring 2018

Groupwork 11: April 24, 2018

1. Determine whether the series converges or diverges.

(a)
∞∑
n=1

1

n(1 + (ln(n)2)

(b)
∞∑
n=1

e1/n

n2

Solution:

(a) We will apply the Integral Test for this question. Note that we have the condition

an = f(n) for f(x) =
1

x(1 + (ln(x)2))
. We must show that f(x) is continuous, positive,

and decreasing on [1,∞). Continuity: g(x) = x is a line therefore continuous, and
h(x) = (1 + ln(x)2) is a composition of continuous function on [1,∞). Therefore the
product g(x)h(x) of continuous function is continuous, and the quotient 1

g(x)h(x)
is also

continuous as the denominator is non-zero on [1,∞). Positive: Since x > 0 on [1,∞),
and (1 + ln(x)2) is also always positive on [1,∞), then f(x) is positive on [1,∞).
Decreasing: To show decreasing, we can show the derivative is negative:

f ′(x) = − (1 + ln(x))2

x2(1 + (ln(x))2)2
< 0,

where the inequality follows since all the terms in the fraction are positive, and the
minus sign in front makes the whole function negative. Now we can apply the Integral
Test: ∫ ∞

1

1

x(1 + (ln(x)2)
dx = lim

t→∞

∫ t

1

1

x(1 + (ln(x)2)
dx

= lim
t→∞

∫ ln(t)

0

1

1 + u2
du let u = ln(x), du =

1

x
dx

= lim
t→∞

arctan(u)|ln(t)0 = lim
t→∞

arctan(ln(t))− arctan(0)

=
π

2
<∞ ⇒ convergent by Integral Test

The comparison or limit comparison test could also be used here to prove that the series
is convergent.

(b) We will apply the Integral Test for this question, using the same format as the

previous problem but for f(x) =
e1/x

x2
. Continuity: The functions e1/x and x2, are both

continuous, therefore their quotient is continuous on [1,∞), as x2 is non-zero on [1,∞).
Positive: Since the exponential function, and x2 are always positive, f(x) is also always
positive on [1,∞). Decreasing: To show decreasing, we can show the derivative is
negative:

f ′(x) = −e
1/x(2x+ 1)

x4
< 0,



where the inequality follows since all the terms in the fraction are positive, and the
minus sign in front makes the whole function negative. Now we can apply the Integral
Test: ∫ ∞

1

e1/x

x2
dx = lim

t→∞

∫ t

1

e1/x

x2
dx

= lim
t→∞
−
∫ 1/t

1

eu du let u =
1

x
, du = − 1

x2
dx

= lim
t→∞

eu|1/t1 = lim
t→∞
−e1/t + e

= e− 1 <∞ ⇒ convergent by Integral Test

The comparison or limit comparison test could also be used here to prove that the series
is convergent.

Please, show all work.
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2. Determine the values of p for which the series is convergent. You must show all work

and justify your answer. Hint: You can use the fact that f ′(x) = − p+ ln(x)

x2(ln(x))p+1
.

∞∑
n=2

1

n(ln(n))p

Solution:

We will apply the Integral Test for this question. Note that we have the condition

an = f(n) for f(x) =
1

x(ln(x))p
. We must show that f(x) is continuous, positive, and

decreasing on [2,∞). Continuity: g(x) = x is a line therefore continuous, and
h(x) = (ln(x))p is also continuous for any p on [2,∞). So, the product and quotient of
continuous functions is continuous, so f(x) is continuous. Positive: Since x > 0 on
[2,∞), and (ln(x))p is also always positive on [2,∞) for any p, then f(x) is positive on
[2,∞). Decreasing: To show decreasing, we can show the derivative is negative:

f ′(x) = − p+ ln(x)

x2(ln(x))p+1
.

Note that the denominator is always positive for any p, therefore we only need to work
with the numerator. If we want f ′(x) < 0, then we require that p+ ln(x) > 0, or solving
for x, we have x > e−p. So for all x > e−p, the derivative will be negative, which is all
we require to apply the Integral Test. Now we can apply the Integral Test:∫ ∞

2

1

x(ln(x))p
dx = lim

t→∞

∫ t

2

1

x(ln(x))p
dx

= lim
t→∞

∫ ln(t)

ln(2)

1

up
du let u = ln(x), du =

1

x
dx

= lim
t→∞

u−p+1

−p+ 1

∣∣∣∣ln(t)
ln(2)

= lim
t→∞

u1−p

1− p

∣∣∣∣ln(t)
ln(2)

assuming p 6= 1

= lim
t→∞

ln(t)1−p

1− p
− ln(2)1−p

1− p

=∞ if p < 1 and − ln(2)1−p

1− p
<∞ if p > 1

But what about p = 1? We can start with the second line above for the p = 1 case∫ ∞
2

1

x ln(x)
dx = lim

t→∞

∫ ln(t)

ln(2)

1

u
du

= lim
t→∞

ln(u)|ln(t)ln(2)

= lim
t→∞

ln(ln(t))− ln(ln(2))

=∞ ⇒ divergent for the case p = 1

Therefore, the series is convergent for p > 1. (Recall: The p = 2 case was on the
midterm!)

Please, show all work.
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3. Determine whether the series converges or diverges.

(a)
∞∑
n=1

cos2(n)

n2 + 1

(b)
∞∑
n=3

1

ln(ln(n))

Solution:

(a) We can apply the direct comparison test. Note that if we didn’t have the cos2(n)

term, we would have just
1

n2 + 1
. We also know that

n2 < n2 + 1 for n ≥ 1

1

n2 + 1
<

1

n2
,

and
1

n2
is a convergent p-series. Thus we can use the above bound on our series to see

that

cos2(n)

n2 + 1
≤ 1

n2 + 1
<

1

n2
,

since 0 ≤ cos2(x) ≤ 1. We now establish that

∞∑
n=1

cos2(n)

n2 + 1
≤

∞∑
n=1

1

n2
<∞.

So by direct comparison test, the series converges.

(b) We can apply the direct comparison test. To do so, we must remember our bound
for the logarithm function

n > ln(n) for n ≥ 1

ln(n) > ln(ln(n)) for n ≥ 1

⇒ ln(ln(n)) < ln(n) < n

⇒ 1

n
<

1

ln(n)
<

1

ln(ln(n))

where the second inequality follows since ln(x) is non-negative for all x ≥ 3, and ln(x) is
a strictly increasing function, so we can apply it to both sides of the inequality. In the
third line, we can combine the inequalities, and in the fourth line, we use our usual
reciprocal trick. Now, since the harmonic series diverges, we have

∞ =
∞∑
n=3

1

n
<
∞∑
n=3

1

ln(n)
<
∞∑
n=3

1

ln(ln(n))
,

so by direct comparison test, the series diverges.

Please, show all work.
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4. Determine whether the series converges or diverges.

(a)
∞∑
n=1

2n5 + 4n3 + 2n+ 1√
n12 + n8 + 7n2 + 1

(b)
∞∑
n=1

sin

(
1

n

)

Solution:

(a) We should apply the limit comparison test due to the polynomials. The terms in the
series are all positive, so we can apply limit comparison test. For these, take the highest
powers of the numerator and the denominator, including any roots that are present to
find out what to compare with

2n5 + 4n3 + 2n+ 1√
n12 + n8 + 7n2 + 1

⇒ n5

√
n12

=
n5

n6
=

1

n
.

So the sum of
1

n
would give the harmonic series which is divergent. So we expect this

series to be divergent. Take an to be our series and bn = 1
n
. We now compute the limit

and use some algebra

lim
n→∞

an
bn

= lim
n→∞

2n5+4n3+2n+1√
n12+n8+7n2+1

1
n

= lim
n→∞

2n6 + 4n4 + 2n2 + n√
n12 + n8 + 7n2 + 1

= lim
n→∞

2n6 + 4n4 + 2n2 + n√
n12 + n8 + 7n2 + 1

·
1√
n12

1√
n12

= lim
n→∞

2 + 4
n2 + 2

n4 + 1
n5√

1 + 1
n4 + 7

n10 + 1
n12

=
2√
1

= 2

Since the limit is a finite positive number, our series is divergent since the harmonic
series is divergent. NOTE: Just because the limit here is finite does not imply the
series converges. Remember the theorem statement. So by limit comparison test, the
series diverges.

(b) Use the Limit Comparison Test with the harmonic series. Note, we can use the limit
comparison test since for n = 1, 2, 3, . . ., we have that 0 ≤ sin

(
1
n

)
≤ sin(1) ≈ 0.841, so

all the terms are positive. We also use the trick from the previous quiz:

lim
n→∞

sin(1/n)

1/n
= lim

t→0+

sin(t)

t
= 1

Therefore, since the limit is positive and finite, and the harmonic series diverges, the
original series diverges by limit comparison test.

Please, show all work.

5


