MATH 65B - Spring 2018

Groupwork 9: April 5, 2018

1. Find the area of the region that lies outside the circle $r=2 \sin (\theta)$, and inside the polar rose $r=2 \sin (2 \theta)$. The region is given by the shaded region in the labeled plot below.

Solution:

Find the intersection points first! We solve the following:

$$
\begin{aligned}
& 2 \sin (\theta)=2 \sin (2 \theta) \\
& 2 \sin (\theta)=4 \sin (\theta) \cos (\theta) \\
& 2 \sin (\theta) \cos (\theta)-\sin (\theta)=0 \\
& \sin (\theta)(2 \cos (\theta)-1)=0 \\
& \sin (\theta)=0 \quad \text { and } \quad \cos (\theta)=\frac{1}{2} \\
& \Rightarrow \quad \theta=0, \pi, \frac{\pi}{3}, \frac{5 \pi}{3}
\end{aligned}
$$

Now, we can find the area of the shaded region on the left, and multiply by 2 due to symmetry. The "outside" region is the polar rose, and the "inside" region is the circle. So we integrate only to the first intersection point, ie. 0 to $\frac{\pi}{3}$. So we have

$$
\begin{aligned}
A & =2 \int_{a}^{b} \frac{1}{2}\left(f(\theta)^{2}-g(\theta)^{2}\right) d \theta=2 \int_{0}^{\frac{\pi}{3}} \frac{1}{2}\left((2 \sin (2 \theta))^{2}-(2 \sin (\theta))^{2}\right) d \theta \\
& =4 \int_{0}^{\frac{\pi}{3}}\left(\sin ^{2}(2 \theta)-\sin ^{2}(\theta)\right) d \theta \\
& =4 \int_{0}^{\frac{\pi}{3}}\left(\left(\frac{1}{2}(1-\cos (4 \theta))\right)-\left(\frac{1}{2}(1-\cos (2 \theta))\right)\right) d \theta \\
& =2 \int_{0}^{\frac{\pi}{3}}(\cos (2 \theta)-\cos (4 \theta)) d \theta \\
& =2\left[\frac{1}{2} \sin (2 \theta)-\frac{1}{4} \sin (4 \theta)\right]_{0}^{\frac{\pi}{3}}=\frac{3 \sqrt{3}}{4}
\end{aligned}
$$

2. Find the area inside the lemniscate $r^{2}=8 \cos (2 \theta)$, and outside the circle $r=2$.

Solution:

Find the intersection points first! We solve the following:

$$
\begin{aligned}
& r^{2}=8 \cos (2 \theta) \quad \text { and } \quad r^{2}=4 \\
& 8 \cos (2 \theta)=4 \\
& \cos (2 \theta)=\frac{1}{2} \\
& \cos (u)=\frac{1}{2} \quad \text { for } u=2 \theta \\
& u=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{11 \pi}{3} \\
& \theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}
\end{aligned}
$$

Now, we can find the area of the shaded region on the left, and multiply by 4 due to symmetry. The "outside" region is the lemniscate half petal, and the "inside" region is the circle. So we integrate only to the first intersection point, ie. 0 to $\frac{\pi}{6}$. So we have

$$
\begin{aligned}
A & =4 \int_{a}^{b} \frac{1}{2}\left(f(\theta)^{2}-g(\theta)^{2}\right) d \theta \\
& =4 \int_{0}^{\frac{\pi}{6}} \frac{1}{2}\left(8 \cos (2 \theta)-(2)^{2}\right) d \theta \\
& =8 \int_{0}^{\frac{\pi}{6}}(2 \cos (2 \theta)-1) d \theta \\
& =\left.8[\sin (2 \theta)-\theta]\right|_{0} ^{\frac{\pi}{6}} \\
& =4 \sqrt{3}-\frac{4 \pi}{3}
\end{aligned}
$$

3. Find the length of the given curve.

$$
r=\cos ^{4}\left(\frac{\theta}{4}\right), \quad 0<\theta<2 \pi
$$

Solution:

Recall that the arc length formula for polar coordinates is

$$
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

First we compute the inside of the square root

$$
\begin{aligned}
r^{2}+\left(\frac{d r}{d \theta}\right)^{2} & =\cos ^{8}\left(\frac{\theta}{4}\right)+\left(4 \cos ^{3}\left(\frac{\theta}{4}\right)\left(-\sin \left(\frac{\theta}{4}\right)\right) \cdot \frac{1}{4}\right)^{2} \\
& =\cos ^{8}\left(\frac{\theta}{4}\right)+\cos ^{6}\left(\frac{\theta}{4}\right) \sin ^{2}\left(\frac{\theta}{4}\right) \\
& =\cos ^{6}\left(\frac{\theta}{4}\right)\left[\cos ^{2}\left(\frac{\theta}{4}\right)+\sin ^{2}\left(\frac{\theta}{4}\right)\right] \\
& =\cos ^{6}\left(\frac{\theta}{4}\right)
\end{aligned}
$$

Now we can compute the integral:

$$
\begin{aligned}
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta & =\int_{0}^{2 \pi} \sqrt{\cos ^{6}\left(\frac{\theta}{4}\right)} d \theta=\int_{0}^{2 \pi}\left|\cos ^{3}\left(\frac{\theta}{4}\right)\right| d \theta \\
& =\int_{0}^{2 \pi} \cos ^{3}\left(\frac{\theta}{4}\right) d \theta \quad \text { note that } \cos ^{3}\left(\frac{\theta}{4}\right) \geq 0 \text { for } 0 \leq \theta \leq 2 \pi \\
& =4 \int_{0}^{\frac{\pi}{2}} \cos ^{3}(u) d u \quad \text { use } u=\frac{\theta}{4}, d u=\frac{1}{4} d \theta \\
& =\left.4\left[\sin (u)-\frac{\sin ^{3}(u)}{3}\right]\right|_{0} ^{\frac{\pi}{2}}=4\left(1-\frac{1}{3}\right)=\frac{8}{3}
\end{aligned}
$$

The plot of $r=\cos ^{4}\left(\frac{\theta}{4}\right), \quad 0<\theta<2 \pi$ is given below

