Name: \qquad Score: \qquad / 100

Student ID:

\qquad

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

	1	2	3	4	5	6	7	8	9	10	11	Total
\checkmark												100
Score												
Pts. Possible	10	10	10	10	10	10	10	10	10	10	10	110

INSTRUCTIONS FOR STUDENTS

- Questions are on both sides of the paper. This is an 11 question exam.
- Students have 2 hours and 30 minutes to complete the exam.
- The test will be out of $\mathbf{1 0 0}$ points. You may attempt as many problems or parts of problems as you would like. The highest possible score is therefore $\mathbf{1 1 0}$ points.
- In the above table, the row with the \checkmark, is for you to keep track of the problems you are attempting/completing.
- You may complete parts of problems, as partial credit will be given based on correctness, completeness, and ideas that are leading to the correct solutions.
- PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit. This means you need to state which test you are using for series questions! Clearly box your final answer.
- No notes, textbooks, phones, calculators, etc. are allowed for the exam.
- The last page of the test can be used for scratch work.

GOOD LUCK!

FORMULAS:

$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$	$\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)}{\frac{d r}{d \theta} \cos (\theta)-r \sin (\theta)}$
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad$ for all $\|x\|<1$	$\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad$ for all $x \in \mathbb{R}$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad$ for all $x \in \mathbb{R}$	$\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \quad$ for all $x \in \mathbb{R}$
$\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}, \quad$ for $x \in(-1,1]$	$\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \quad$ for $\|x\| \leq 1$
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}, \quad$ for $\|x-a\|<R$	$(1+x)^{m}=\sum_{n=0}^{\infty}\binom{m}{n} x^{n}, \quad$ for $\|x\|<1$

1) (10 pts.) Consider the parametric curve for $0 \leq t \leq \pi$, given by

$$
\begin{aligned}
& x=\sin (t) \\
& y=\cos (t)
\end{aligned}
$$

(a) (3 pts.) Sketch the graph of the parametric curve and identify the direction for increasing values of t with an arrow.
(b) (4 pts .) Find the values of t where the the tangent line is vertical.
(c) $(3 \mathrm{pts}$.$) Determine for which values of t$ is the curve concave up.
2) (10 pts.) Consider the polar curve for $0 \leq t \leq \pi$, given by

$$
r=4 \sin (3 \theta)
$$

(a) (4 pts.) Plot the curve on the given polar grid below.
(b) (6 pts.$)$ Find the equation of the tangent line at $\theta=\frac{\pi}{6}$.

3) (10 pts.) Find the area of the region that lies inside one of the small petal and one large petal of

$$
r=1+2 \cos (2 \theta)
$$

Hint: Identities that may be helpful: 1) $\sin ^{2}(2 \theta)=\frac{1}{2}-\frac{1}{2} \cos (4 \theta)$, 2) $\cos ^{2}(2 \theta)=\frac{1}{2}+\frac{1}{2} \cos (4 \theta)$.

4) (5 pts .) (a) Determine whether the sequence converges or diverges:

$$
a_{n}=\left(1+\sin \left(\frac{1}{n}\right)\right)^{\cot \left(\frac{1}{n}\right)}
$$

(5 pts.) (b) Determine whether the sequence converges or diverges:

$$
a_{n}=\arctan (2 n)
$$

5) (5 pts.) (a) Determine whether the series is convergent or divergent:

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}}
$$

(5 pts.) (b) Determine the rational number $\frac{p}{q}$, for $p, q \in \mathbb{Z}$ which represents the decimal expansion for $0 . \overline{123}=0.123123 \ldots$, using infinite series.
6) (5 pts.) Determine whether the series is convergent or divergent

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{3}}
$$

(b) (5 pts.) Determine whether the series is convergent or divergent

$$
\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)
$$

7) (5 pts.) (a) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=1}^{\infty} \frac{n!}{e^{n^{2}}}
$$

(5 pts.) (b) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=0}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}
$$

8) (10 pts.) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{n^{3}}{n^{4}+1} .
$$

9) (10 pts.) Find the radius of convergence and interval of convergence for the following power series.

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{2 n+1}
$$

10) (10 pts.) Compute the first 4 non-zero terms of the Taylor series centered at $a=3$ for the following function using the definition of a Taylor series.

$$
f(x)=e^{x}
$$

11) (5 pts.) (a) Compute the following integral using Taylor series, and leave the answer as a Taylor series.

$$
\int \cos \left(x^{2}\right) d x
$$

(5 pts.) (b) Find the Taylor series centered at $a=0$ for the function and write as a single series.

$$
f(x)=e^{-x^{2}}+\cos (x)
$$

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK

END OF TEST

