
Math 009C - §9.5, Lecture Problem # 1

Worked Solution

1. Let r = 1 + sin(θ) for 0 ≤ θ ≤ 2π. (a) Find the tangent line at the value of θ =
π

4
. (b)

Find the values of θ where there is a horizontal or vertical tangent line.

Solution: (a) First we compute the derivative and plug in θ = π/4 to find the slope.
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sin(θ) + r cos(θ)
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cos(θ)− r sin(θ)

=
cos(θ) sin(θ) + [1 + sin(θ)] cos(θ)

cos2(θ)− [1 + sin(θ)] sin(θ)

=
2 cos(θ) sin(θ) + cos(θ)

cos2(θ)− sin(θ)− sin2(θ)
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Now we find the values of the x and y coordinates of the points using the original polar
equation.

y − y0 =
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⇒ y0 = r sin(θ) = [1 + sin(θ)] sin(θ) = sin(θ) + sin2(θ) =
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⇒ x0 = r cos(θ) = [1 + sin(θ)] cos(θ) = cos(θ) + cos(θ) sin(θ) =
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(b) For the horizontal tangent lines, set the numerator of the derivative equal to zero,
and solve for θ.

dy

dθ
= 0

2 cos(θ) sin(θ) + cos(θ) = 0

cos(θ)(2 sin(θ) + 1) = 0

cos(θ) = 0 and 2 sin(θ) + 1 = 0 or sin(θ) = −1
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For the vertical tangent lines, set the denominator of the derivative equal to zero, and



solve for θ. We also need to use the identity cos2(t) = 1− sin2(t).

dx

dθ
= 0

cos2(θ)− sin(θ)− sin2(θ) = 0

1− sin2(t)− sin(θ)− sin2(θ) = 0

2 sin2(θ) + sin(θ)− 1 = 0

(2 sin(θ)− 1)(sin(θ) + 1) = 0

sin(θ) + 1 = 0 and 2 sin(θ)− 1 = 0

sin(θ) = −1 and sin(θ) =
1
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Note that at θ =
3π

2
, we have the indeterminate form

0

0
. Thus we have to take the

limit. Using L’Hopital’s Rule, and computing the right and left limits:

lim
θ→( 3π

2 )
+
−2 cos(θ) sin(θ) + cos(θ)

2 sin2(θ) + sin(θ)− 1
= lim

θ→( 3π
2 )

+
−−2 sin2(θ) + 2 cos2(θ)− sin(θ)

4 sin(θ) cos(θ) + cos(θ)

=
−2(−1)2 + 2(0−)2 − (−1)

4(−1)(0−) + 0−
=
−1
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and
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−

2 cos(θ) sin(θ) + cos(θ)

2 sin2(θ) + sin(θ)− 1
= lim
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−

−2 sin2(θ) + 2 cos2(θ)− sin(θ)

4 sin(θ) cos(θ) + cos(θ)

=
−2(−1)2 + 2(0+)2 − (−1)

4(−1)(0+) + 0+
=
−1

0−
=∞

The 0+ and 0− denote that the value is a very small positive or negative number,
respectively, that is approaching zero. This allows us to get the signs on the infinities.

Therefore, at θ =
3π

2
, there is neither a vertical nor horizontal tangent line, because the

limit does not exists, because the limit is two difference values from the left and right
hand sides.
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