Disk/Washer Method $\int_{a}^{b} A(x) d x$ or $\int_{a}^{b} A(y) d y$

Take cross-sections PERPENDICULAR to axis of revolution.
If cross-section is a solid disk, $A=\pi R^{2}$
If cross-section is a washer/ring/annulus, $A=\pi R^{2}-\pi r^{2}$
Axis of Revolution is HORIZONTAL: integrate with respect to x :

$$
V=\int_{a}^{b} \pi[f(x)]^{2} d x
$$

$$
V=\int_{a}^{b} \pi[f(x)]^{2}-\pi[g(x)]^{2} d x
$$

$V=\int_{a}^{b} \pi[f(x)+c]^{2}-\pi c^{2} d x$

$$
V=\int_{a}^{b} \pi c^{2}-\pi[c-f(x)]^{2} d x
$$

$V=\int_{a}^{b} \pi[c-g(x)]^{2}-\pi[c-f(x)]^{2} d x$

Examples of regions that can be done with either the disk/washer method or the shell method: see $\S 6.2, \# 19-30$.

Disk/Washer Method (cont.) $\int_{a}^{b} A(x) d x$ or $\int_{a}^{b} A(y) d y$

Take cross-sections PERPENDICULAR to axis of revolution.
If cross-section is a solid disk, $A=\pi R^{2}$
If cross-section is a washer/ring/annulus, $A=\pi R^{2}-\pi r^{2}$
Axis of Revolution is VERTICAL: integrate with respect to y :

$$
V=\int_{a}^{b} \pi[f(y)]^{2} d y
$$

$$
V=\int_{a}^{b} \pi[f(y)]^{2}-\pi[g(y)]^{2} d y
$$

$V=\int_{a}^{b} \pi[f(y)+c]^{2}-\pi c^{2} d y$
$V=\int_{a}^{b} \pi[f(y)+c]^{2}-\pi[g(y)+c]^{2} d y$

Examples of regions that are best to use the disk/washer method:
$y=1 / x, x=1, x=2, y=0$ about the x-axis, or about the lines $y=-1, y=5$
$y=\cos x, y=\sin x, x=0, x=\pi / 6$ about the x-axis, or about the lines $y=1, y=-1$
$x=2 y-y^{2}, x=0$, about the y-axis, or about the lines $x=5, x=-5$

Shell Method $\int_{a}^{b} 2 \pi R h d x$ or $\int_{a}^{b} 2 \pi R h d y$
Take cross-sections PARALLEL to axis of revolution.
Figure out the radius R from cross-section to the axis of revolution
Figure out the height h of the cross-section
Axis of Revolution is VERTICAL: integrate with respect to x :

$V=\int_{a}^{b} 2 \pi x f(x) d x$

$V=\int_{a}^{b} 2 \pi x[f(x)-g(x)] d x$

$V=\int_{a}^{b} 2 \pi(x+c) f(x) d x$
$V=\int_{a}^{b} 2 \pi(x+c)(f(x)-g(x)) d x$

$$
V=\int_{a}^{b} 2 \pi(c-x) f(x) d x
$$

$V=\int_{a}^{b} 2 \pi(c-x)(f(x)-g(x)) d x$

Examples of regions that are best to use the shell method:
$y=1 / x, x=1, x=2, y=0$ about the y-axis, or about the lines $x=3, x=0.5$ $y=\cos x, y=\sin x, x=0, x=\pi / 6$ about the y-axis, or about the lines $x=2, x=-2$ $x=2 y-y^{2}, x=0$, about the x-axis, or about the lines $y=5, y=-5$

Shell Method (cont.) $\int_{a}^{b} 2 \pi R h d x$ or $\int_{a}^{b} 2 \pi R h d y$
Take cross-sections PARALLEL to axis of revolution.
Figure out the radius R from cross-section to the axis of revolution
Figure out the height h of the cross-section
Axis of Revolution is HORIZONTAL: integrate with respect to y :

$$
V=\int_{a}^{b} 2 \pi y f(y) d y
$$

$$
V=\int_{a}^{b} 2 \pi y[f(y)-g(y)] d y
$$

$$
V=\int_{a}^{b} 2 \pi(y+c) f(y) d y
$$

$$
V=\int_{a}^{b} 2 \pi(y+c)(f(y)-g(y)) d y
$$

