§1-Review

Solving Equations

Example 0.1. $3 y+2[5(y-4)-2]=5 y+6(7+y)-3$
Example 0.2. $(2 y-3)^{\frac{1}{3}}-(4 y+5)^{\frac{1}{3}}=0$
$\underline{\text { Solving for a variable }}$

Example 0.3. $a^{2}+b^{2}=c^{2} \quad$ Solve for a
Example 0.4. $A=P+P r t \quad$ Solve for r
Example 0.5. $A=\pi r^{2} \quad$ Solve for r
$\underline{\text { Solving Inequalities }}$

Example 0.6. $-2(x+3)<10$ Solve for x in interval notation
Example 0.7. $4 x-1 \leq 3 x-4 \quad$ Solve for x in interval notation
Example 0.8. $-3 \leq 2 x+5<17$ Solve for x in interval notation
Example 0.9. $|x-13|+4 \leq 5 \quad$ Solve for x in interval notation

Word Problem

Example 0.10. How much 80% antifreeze solution should be mixed with 2 gallons of 50% antifreeze solution to make a 60% antifreeze solution?

$\S 2.4$ - Linear Equations in Two Variables

There are three forms for writing the equation of a line. They are as follows:
A linear equation can be written in standard form as: $a x+b y=c$
A linear equation can be written in point-slope form as: $y-y_{1}=m\left(x-x_{1}\right)$
A linear equation can be written in slope-intercept form as: $y=m x+b$

Example 0.11. Graph the following lines:

$$
\begin{aligned}
2 x+3 y & =6 \\
x & =3 \\
y & =2
\end{aligned}
$$

Example 0.12. Find the slope of the three lines in the above problem.
Example 0.13. Find the slope of the line passing through the points $(-3,-2)$ and $(2,5)$.
Example 0.14. Graph a line with slope -4 and passes through the point $(2,-3)$.

The average rate of change of a function, $f(x)$ between two points, $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ is given by the following equation:

$$
\text { Average Rate of Change }=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Example 0.15. Find the average rate of change of the function $f(x)=x^{2}-1$ between the points $x_{1}=-2$ and $x_{2}=0$.

Example 0.16. Solve the following equations and inequalities by graphing:

$$
\begin{aligned}
& 2 x-3=x-1 \\
& 2 x-3<x-1 \\
& 2 x-3>x-1
\end{aligned}
$$

Example 0.17. Solve $6 x-2(x+2)-5 \leq 0$ by graphing.

$\S 2.5$ - Applications of Linear Equations

Example 0.18. Using the point slope formula, write the equation of the line passing through $(4,-6)$ and $(1,-2)$.

If m_{1} and m_{2} are slopes of 2 non-vertical parallel lines, then $m_{1}=m_{2}$.
If m_{1} and m_{2} are slopes of 2 non-vertical perpendicular lines, then $m_{1}=-\frac{1}{m_{2}}$ or $m_{1} m_{2}=-1$.

Example 0.19. For each of the following slopes m_{1}, write the slope m_{2} that is perpendicular to it:

$$
\begin{array}{r}
m_{1}=2 \\
m_{1}=-3 \\
m_{1}=-\frac{1}{4}
\end{array}
$$

Example 0.20. Write an equation of a line passing through $(-4,1)$ and parallel to the line $x+4 y=3$.
Example 0.21. Write an equation of a line passing through $(-3,2)$ and parallel to the line $x+3 y=6$.
Example 0.22. Write an equation of a line passing through $(2,-3)$ and perpendicular to the line $y=\frac{1}{2} x-4$.
Example 0.23. Write an equation of a line passing through $(-8,-4)$ and perpendicular to $6 y-x=18$.

Linear Cost Function: $C(x)=m x+b$
Revenue Function: $R(x)=p x$
Profit Function: $P(x)=R(x)-C(x)$
Where m is the variable cost, b is the fixed cost, x is the number of items, and p is the selling price.

Example 0.24. A family phone plan has a monthly base price of $\$ 99$ plus $\$ 12.99$ for each additional phone added to the plan. Write the linear cost function $C(x)$. Compute $C(4)$. What does this answer mean?

Example 0.25. An art show vendor sells lemonade for $\$ 2.00$ per cup. The cost to rent the booth at the show costs $\$ 120$. Supplies to make and serve lemonade cost $\$.50$ per cup of lemonade.
a) Write the cost function.
b) Write the revenue function.
c) Write the profit function.
d) How much profit is made if 50 cups are sold?
e) How much profit is made if 128 cups are sold?
f) How many cups must be sold for the vendor to break even?

Example 0.26. If the fixed cost of a business is $\$ 2275$, its variable cost is $\$ 34.50$, and the price it sells each item is $\$ 80$, then write the three functions $C(x), R(x)$, and $P(x)$.

Example 0.27. Jorge borrows $\$ 2400$ from his grandmother and pays the money back at a rate of $\$ 150$ per month.
a) Write the linear function $L(x)$ for the amount of money that Jorge still owes his grandmother at x months.
b) Calculate $L(12)$ and explain its meaning.

Example 0.28. A car has a 15 gallon tank for gas and gets 30 miles to the gallon on a highway when driving 60 miles per hour. If he starts with a full tank of gas (15 gallons), and travels 450 miles at 60 miles per hour, then
a) Write the $G(t)$ function for the amount left in the tank.
b) Find $G(4.5)$ and explain its meaning.

Example 0.29. A dance studio has a fixed cost of $\$ 1500$. The studio charges $\$ 60$ for each lesson. The studio has a variable cost of $\$ 35$ to pay instructors.
a) Write the cost function.
b) Write the revenue function.
c) Write the profit function.
d) Determine the number of lessons to make a profit.
e) If 82 lessons are given in one month how much does the studio make?

$\S 2.6$ - Transformations

Below is a chart that summarizes all of the transformations we covered in class. The general formula is in the second column, and there is an example given for each case for the function $f(x)=|x|$ (the absolute value function). You can use the second column as a guide to work with any function that you are given. In class we will work with $f(x)=|x|, f(x)=x^{2}$, and $f(x)=x^{3}$.

Transformation	$F(x)$ Notation		Examples
Vertical translation	$\mathrm{f}(\mathrm{x})+\mathrm{k}$	$\begin{aligned} & Y=\|x\|+3 \\ & Y=\|x\|-4 \end{aligned}$	3 units up 4 units down
Horizontal translation	$f(x-h)$	$\begin{aligned} & Y=\|x-2\| \\ & Y=\|X+1\| \end{aligned}$	2 units right 1 unit left
Vertical stretch/ compression	af(x)	$\begin{aligned} & Y=6\|x\| \\ & Y=1 / 2\|x\| \end{aligned}$	vertical stretch by 6 vertical compression by $1 / 2$
Horizontal stretch/compression	F(1/bx)	$\begin{aligned} & Y=\|1 / 5 \mathrm{x}\| \\ & \mathrm{Y}=\|3 \mathrm{x}\| \end{aligned}$	horizontal stretch by 5 horizontal compression by $1 / 3$
Reflection	$\begin{aligned} & \hline-f(x) \\ & f(-x) \end{aligned}$	$\begin{aligned} & Y=-\|x\| \\ & Y=\|-x\| \end{aligned}$	across x-axis across y-axis

Figure 1. Transformation Chart - From http://hellermaayanotmath.wikispaces.com

Below are a few examples of using transformations that may be helpful for studying.

Example 0.30. Apply a horizontal translation 3 units left and a vertical translation of 4 units down for the graph of $f(x)=x^{2}$, and write the formula for this graph.
Example 0.31. Apply a horizontal translation 2 units right, a vertical translation of 5 units up, and a reflection over the x-axis for the graph of $f(x)=|x|$, and write the formula for this graph.

Example 0.32. Sketch the graph of $f(x)=(x+5)^{5}-2$ using graph transformations.
Example 0.33. Sketch the graph of $f(x)=(x+1)^{3}+2$ using graph transformations.
Example 0.34. Sketch the graph of $f(x)=-|x-3|+4$ using graph transformations.
Example 0.35. Sketch the graph of $f(x)=-2(x+1)^{2}-5$ using graph transformations.
Example 0.36. Sketch the graph of $f(x)=\sqrt{x+5}$ using graph transformations.

$\S 2.7$ - Graphs of Functions and Piecewise Functions

Symmetry Test:

1) The graph of a function is symmetric about the y-axis if we substitute $-x$ for x, and reduce, then we get the same function we started with.
2) The graph of a function is symmetric about the x-axis if we substitute $-y$ for y, and reduce, then we get the same function we started with.
3) The graph of a function is symmetric about the origin if we substitute $-x$ for x AND $-y$ for y, and reduce, then we get the same function we started with.

Check the above 3 conditions on the following functions to check for symmetry:
Example 0.37. $y=|x|$
Example 0.38. $x=y^{2}-4$
Example 0.39. $y=x^{2}$
Example 0.40. $y=x^{3}$

Even and Odd Test:

1) The graph of a function is even if $f(-x)=f(x)$ for all x in the domain of the function. The graph of an even function is symmetric about the y-axis.
2) The graph of a function is odd if $f(-x)=-f(x)$ for all x in the domain of the function. The graph of an odd function is symmetric about the origin
3) If the function $f(x)$ does not satisfy either condition above, the function is neither even nor odd.

Check the above 3 conditions on the following functions to check if the function is even, odd, or neither:
Example 0.41. $f(x)=-2 x^{4}+5|x|$
Example 0.42. $f(x)=4 x^{3}-x$
Example 0.43. $f(x)=-x^{5}+x^{3}$
Example 0.44. $f(x)=x^{2}-|x|+1$
Example 0.45. $f(x)=2|x|+x$
Example 0.46. $f(x)=x^{4}+x^{2}+x+1$

Piecewise Functions

Evaluate the following function at the given points:

$$
f(x)=\left\{\begin{array}{lll}
-x-1 & \text { for } & -4 \leq x<-1 \\
-3 & \text { for } & -1 \leq x<2 \\
\sqrt{x-2} & \text { for } & x \geq 2
\end{array}\right.
$$

a) $f(-3)$
b) $f(-1)$
c) $f(2)$
d) $f(6)$

Graphing Piecewise Functions

Here are some guided steps that you can use to always graph piecewise functions accurately:

1) Draw your x and y axes (if none are provided for you).
2) Plot your points that are at end of the intervals first (the ones that are given next to each piece (ex. $-4,-1,2$ in the previous example). Be sure to pay attention whether the dot must be closed or open.
3) Draw lightly a vertical dotted line through each point. This will let you know that each segment of the graph can only be located in the regions that you have sliced the plane into.
4) Draw the graph the question indicates in each region.
5) The graph should be completed in each section, this is your piecewise graph.

Here are some examples to try. Graph the following piecewise functions:

Example 0.47.

$$
f(x)=\left\{\begin{array}{lll}
x+3 & \text { for } & x<-1 \\
x^{2} & \text { for } & -1 \leq x<2
\end{array}\right.
$$

Example 0.48.

$$
f(x)= \begin{cases}|x| & \text { for } \quad-4 \leq x<2 \\ x^{2} & \text { for } \quad x \geq 2\end{cases}
$$

Example 0.49.

$$
f(x)=\left\{\begin{array}{lll}
-x+1 & \text { for } & x<1 \\
\sqrt{x} & \text { for } & 1 \leq x<4
\end{array}\right.
$$

Example 0.50.

$$
f(x)=\left\{\begin{array}{lll}
x^{2}+1 & \text { for } & x<-2 \\
2 x+3 & \text { for } & x \geq 2
\end{array}\right.
$$

Example 0.51.

$$
f(x)=\left\{\begin{array}{lll}
2 & \text { for } & x \leq-1 \\
-2 x & \text { for } & x>-1
\end{array}\right.
$$

Example 0.52.

$$
f(x)=\left\{\begin{array}{lll}
3 x+3 & \text { for } & x<1 \\
x^{2} & \text { for } & 1 \leq x<2 \\
-x-1 & \text { for } & x \geq 2
\end{array}\right.
$$

Greatest Integer Function

The greatest integer function (or floor function) is a special piecewise defined graph. it is defined as

$$
f(x)=[[x]] \quad \text { where }[[x]] \text { denotes the greatest integer less than or equal to } x
$$

Evaluate the greatest integer function at the given points:
a) $f(1)$
b) $f(1.7)$
c) $f(-2.2)$
d) $f(3.5)$

Increasing, Decreasing, and Constant Functions
Suppose that I is an interval contained within the domain of $f(x)$

1) $f(x)$ is an increasing on I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ for all $x_{1}<x_{2}$ in I.
2) $f(x)$ is an decreasing on I if $f\left(x_{1}\right)>f\left(x_{2}\right)$ for all $x_{1}<x_{2}$ in I.
3) $f(x)$ is an increasing on I if $f\left(x_{1}\right)=f\left(x_{2}\right)$ for all x_{1} and x_{2} in I.

Find where the following functions are increasing, decreasing, or constant:
Example 0.53. $f(x)=x^{2}$
Example 0.54. $f(x)=|x+1|$
Example 0.55. $f(x)=-2 x+1$

Relative Minimum and Maximum Values

Let $f(x)$ be a function, and $x=a$ and $x=b$ be two points. Then $f(a)$ is a relative maximum of $f(x)$ if there exists an open interval containing a such that $f(a) \geq f(x)$ for all x in the interval. Alternatively, $f(b)$ is a relative minimum of $f(x)$ if there exists an open interval containing b such that $f(b) \leq f(x)$ for all x in the interval. An open interval is an interval that does not include the endpoints.

Find where the following functions have relative maxima and minima:
Example 0.56. $f(x)=x^{2}$
Example 0.57. $f(x)=|x+1|$

Example 0.58. $f(x)=-(x-2)^{2}+1$

$\S 3.1$ - Quadratic Functions

Definition 0.1. A quadratic function is of the form

$$
f(x)=a x^{2}+b x+c
$$

Definition 0.2. The maximum or minimum of the parabola is called a vertex.
Definition 0.3. The vertical line that passes through the vertex is called the axis of symmetry.
The following proof is to show how to get the vertex form of the parabola in general. We will have to complete the square.

$$
\begin{aligned}
f(x) & =a x^{2}+b x+c \\
& =a\left(x^{2}+\frac{b}{a} x\right)+c \\
& =a\left(x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}\right)+c-a\left(\frac{b^{2}}{4 a^{2}}\right) \\
& =a\left(x+\frac{b}{2 a}\right)^{2}+c-\frac{b^{2}}{4 a} \\
& =a\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a} \\
& =a(x-h)^{2}+k
\end{aligned}
$$

where we define $h=-\frac{b}{2 a}$ and $k=\frac{4 a c-b^{2}}{4 a}$. So then we have that

$$
\begin{aligned}
\text { Vertex } & =\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right) \\
\text { Axis of Symmetry } & \Rightarrow x=-\frac{b}{2 a}
\end{aligned}
$$

Definition 0.4. If we have a quadratic function $f(x)=a x^{2}+b x+c$, then
(i) $a>0$ implies that the vertex is a minimum.
(ii) $a<0$ implies that the vertex is a maximum.

Definition 0.5. If we have a quadratic function $f(x)=a x^{2}+b x+c$, then
(i) If $b^{2}-4 a c>0 \Rightarrow$, then f has 2 real roots.
(ii) If $b^{2}-4 a c=0 \Rightarrow$, then f has 1 real root.
(iii) If $b^{2}-4 a c<0 \Rightarrow$, then f has no real roots (does not cross the x-axis).

Below are a few examples of writing the quadratic in vertex form.

Example 0.59. Rewrite the function $f(x)=x^{2}-8 x+7$ in vertex form.
Example 0.60. Rewrite the function $f(x)=x^{2}+6 x+1$ in vertex form.
Example 0.61. Rewrite the function $f(x)=3 x^{2}+12 x+2$ in vertex form.
Example 0.62. Rewrite the function $f(x)=4 x^{2}-40 x+13$ in vertex form.

§3.2 - Introduction to Polynomials

Definition 0.6. A polynomial function is of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

Definition 0.7. The degree of a polynomial is the highest value exponent of the function $f(x)$ above.

Here is a good chart to summarize the end behavior of polynomials that we covered in class. This includes all the necessary information (this is also called the leading term test in the textbook) to know along with some examples of each.

	Even $\begin{aligned} & -x^{4}+3 x^{2}+1 \\ \text { Examples: } & -(x+3)^{3}(x+2) \\ & x(3-x)^{3}(x+2)^{2} \end{aligned}$	Odd $\begin{aligned} & x^{5}+3 x^{2}+1 \\ \text { Examples: } & (x+3)^{3}(x+2)^{2} \\ & x(3-x)^{3}(x+2) \end{aligned}$
Positive (+) $\begin{array}{ll} & x^{4}+3 x^{2}+1 \\ \text { Examples: } & (x+3)^{3}(x+2) \\ & (3-x)^{4}(x+2) \end{array}$	\uparrow \uparrow $\begin{aligned} & x \rightarrow-\infty, y \rightarrow \infty \\ & x \rightarrow \infty, y \rightarrow \infty \end{aligned}$ Example: $y=x^{2}$	\uparrow \downarrow $\begin{aligned} & x \rightarrow-\infty, y \rightarrow-\infty \\ & x \rightarrow \infty, y \rightarrow \infty \\ & x \rightarrow \infty \end{aligned}$ Examples: $y=x, y=x^{3}$
Negative (-) $\begin{aligned} &-x^{4}+3 x^{2}+1 \\ & \text { Examples: }-(x+3)^{3}(x+2) \\ &(3-x)^{3}(x+2) \end{aligned}$	 \downarrow \downarrow $x \rightarrow-\infty, y \rightarrow-\infty$ $x \rightarrow \infty, y \rightarrow-\infty$ Example: $y=-x^{2}$	$\begin{aligned} & x \rightarrow-\infty, y \rightarrow \infty \\ & x \rightarrow \infty, y \rightarrow-\infty \end{aligned}$ Examples: $y=-x, y=-x^{3}$

Figure 2. End Behavior Chart - From http://www.shelovesmath.com/algebra/advancedalgebra/graphingpolynomials/

Definition 0.8. The multiplicity of $f(x)=(x-a)^{n}$ is the power n. If n is odd, then the graph crosses at the x-intercept $(a, 0)$. If n is even, then the graph touches at the x-intercept $(a, 0)$.
Theorem 0.1. Intermediate Value Theorem: Let f be a polynomial function. For $a<b$, if $f(a)$ and $f(b)$ have opposite signs, then f has at least one zero on the interval $[a, b]$.

Example 0.63. Sketch the graph of $f(x)=x(x+1)^{2}(x-1)^{2}$.
Example 0.64. Sketch the graph of $f(x)=(x+5)^{4}(x+1)^{3}(x-1)^{2}$.
Example 0.65. Sketch the graph of $f(x)=-(x+1)^{2}(x-4)^{2}$.
Example 0.66. Sketch the graph of $f(x)=-x(x+3)^{4}(x-3)^{2}$.
Example 0.67. Sketch the graph of $f(x)=x^{4}-2 x^{2}$.
Example 0.68. Sketch the graph of $f(x)=x^{3}-9 x$.
Example 0.69. Sketch the graph of $f(x)=9 x^{5}+9 x^{4}-25 x^{3}-25 x^{2}$.

$\S 3.3$ - Polynomial Division and Factoring Theorems

Definition 0.9. We can write a polynomial $f(x)$ as the following if $d(x) \neq 0$ and the degree of $d(x)$ is less than or equal to the degree of $f(x)$:

$$
f(x)=d(x) q(x)+r(x)
$$

Where $f(x)$ is the dividend, $d(x)$ is the divisor, $q(x)$ is the quotient, and $r(x)$ is the remainder.

Example 0.70. Use long division to divide: $\left(6 x^{3}-5 x^{2}-3\right) \div(3 x+2)$.
Example 0.71. Use long division to divide: $\left(3 x^{4}+2 x^{3}+4 x^{2}+x-5\right) \div(3 x+2)$.
Example 0.72. Use long division to divide: $\left(4 x^{3}-23 x+3\right) \div(2 x-5)$.
Example 0.73. Use long division to divide: $\left(2 x^{4}-3 x^{3}+5 x^{2}-7 x+1\right) \div\left(x^{2}+3\right)$.
Example 0.74. Use long division to divide: $\left(2 x^{2}+3 x-14\right) \div(x-2)$.
Example 0.75. Use long division to divide: $\left(3 x^{2}-14 x+15\right) \div(x-3)$.

Example 0.76. Use synthetic division to divide: $\left(3 x^{2}-14 x+15\right) \div(x-3)$.
Example 0.77. Use synthetic division to divide: $\left(-10 x^{2}+2 x^{3}-5\right) \div(x-4)$.
Example 0.78. Use synthetic division to divide: $\left(4 x^{3}-28 x-7\right) \div(x-3)$.
Example 0.79. Use synthetic division to divide: $\left(x^{4}+4 x^{3}-2 x+18\right) \div(x+3)$.
Example 0.80. Use synthetic division to divide: $\left(2 x^{4}+7 x^{3}-3 x+5\right) \div(x+1)$.

Example 0.81. Given $f(x)=x^{4}+6 x^{3}-12 x^{2}-30 x+35$, use synthetic division and the remainder to find $f(2)$ and $f(-7)$.
Example 0.82. Given $f(x)=x^{4}+x^{3}-6 x^{2}-5 x-15$, use synthetic division and the remainder to find $f(5)$ and $f(-3)$.

Example 0.83. Given $f(x)=2 x^{4}-4 x^{2}-13 x-9$, use synthetic division and the remainder to determine if $c=4$ is a zero of $f(x)$.
Example 0.84. Given $f(x)=x^{3}+x^{2}-3 x-3$, use synthetic division and the remainder to determine if $c=\sqrt{3}$ is a zero of $f(x)$.
Example 0.85. Given $f(x)=x^{3}+x+10$, use synthetic division and the remainder to determine if $c=1+2 i$ is a zero of $f(x)$.

Example 0.86. Given $f(x)=x^{4}-x^{3}-11 x^{2}+11 x+12$, use synthetic division and the factor theorem to determine if $(x-3)$ and $(x+2)$ are factors $f(x)$.
Example 0.87. Given $f(x)=2 x^{4}-13 x^{3}+10 x^{2}-25 x+6$, use synthetic division and the factor theorem to determine if $(x-6)$ and $(x+3)$ are factors $f(x)$.

Example 0.88. Factor $f(x)=3 x^{3}+25 x^{2}+42 x-40$, given that -5 is a zero of $f(x)$. Then solve the equation $3 x^{3}+25 x^{2}+42 x-40=0$.
Example 0.89. Factor $f(x)=2 x^{3}+7 x^{2}-14 x-40$, given that -4 is a zero of $f(x)$. Then solve the equation $2 x^{3}+7 x^{2}-14 x-40=0$.

Example 0.90. Write a polynomial $f(x)$ of degree three that has roots $x=1, x=2$, and $x=3$.
Example 0.91. Write a polynomial $f(x)$ of degree three that has roots $x=\frac{1}{3}, x=\sqrt{6}$, and $x=-\sqrt{6}$.
Example 0.92. Write a polynomial $f(x)$ of degree three that has roots $x=2, x=1+i$, and $x=1-i$.

Section 3.4-Zeros of Polynomials
Rational Root Theorem If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ has integer coefficients and $a_{n} \neq 0$ if $\frac{p}{q}$ is a rational zero of f, then p is a factor of a_{0}
Ex) $f(x)=-2 x^{5}+3 x^{2}-2 x^{2}+10$] Fest

$$
\begin{aligned}
& f(x)=-4 x^{4}+5 x^{3}-7 x^{2}+8 \rightarrow \\
& f(x)=x^{3}-4 x^{2}+3 x+2 \rightarrow 2,1 \pm \sqrt{2} \\
& f(x)=x^{3}-x^{2}-4 x-2 \rightarrow-1,1 \pm \sqrt{3}
\end{aligned}
$$

E)

$$
\begin{aligned}
& f(x)=2 x^{4}+5 x^{3}-2 x^{2}-11 x-6 \rightarrow x=-2,-1, \frac{3}{2} \\
& f(x)=2 x^{4}+3 x^{3}-15 x^{2}-32 x-12 \rightarrow x=-2,-\frac{1}{2}, 3
\end{aligned}
$$

Ex)

$$
\begin{aligned}
& \left.\begin{array}{l}
f(x)=x^{4}-2 x^{2}-3 \\
f(x)=x^{4}-x^{2}-20
\end{array}\right\} \text { non-ex maple } \\
& \left(x^{2}-3\right)\left(x^{2}+1\right) \\
& \left(x^{2}-5\right)\left(x^{2}+4\right) \\
& \text { Let } x^{2}=z \quad z^{2}-2 z-3 \\
& z^{2}-2-20
\end{aligned}
$$

Find Tho of Alphorn: $f(x)$ has degree $n \geqslant 1$ with complex coefly, the f has at least 1 complex root \#of zerosi $f(x), n \geq 1$, complex coeffy, foes exuthy n complex roots. (unclody meltiphaty)

$$
f(x)=x^{4}-6 x^{3}+28 x^{2}-18 x+75 \text { and } 3-4 i
$$

3+4i, $\pm i \sqrt{3}$
Descartes Rede of Signs

$$
f(x)=x^{5}-6 x^{4}+12 x^{3}-12 x^{2}+11 x-6
$$

Let $f(x)$ be a polynomial with real coeffs and nonzero constant term

1) of pos'zeros is either

- Same as \#of sign changes in $f(x)$
- less than $\#$ of sign changes in $f(x)$ by + integer

2) A of negnizeros is litho
\#t of sign change in

- less than the \#of si bn chasms in $f(-x)$ by pos. integer

5 sign change \Rightarrow +realzeros: 5,3,1

$$
f(-x)=-x^{5}-6 x^{4}-12 x^{3}-12 x^{2}-11 x-6
$$

0 sign change \Rightarrow no negrealroits

Find zeros of $f(x)=2 x^{5}+x^{4}+9 x^{2}-32 x+20$

$$
f(x)=x^{5}+6 x^{3}-2 x^{2}-27 x-18
$$ $1,1,-\frac{5}{2}$ sisndhange

Section 35 - Rational Functions
Let $p(x)$ and $g(x) \neq 0$ be two functions.
$f(x)=\frac{p(x)}{q(x)}$ is called a rational function
Ext)

$$
\begin{array}{l|l|l}
\text { Function } & \text { Factored } & \text { Domain } \\
\hline f(x)=\frac{1}{x} & f(x)=\frac{1}{x} & (-\infty, 0) \cup(0, \infty) \\
g(x)=\frac{5 x^{2}}{2 x^{2}+5 x-12} & g(x)=\frac{5 x^{2}}{(2 x-3)(x+4)} & (-\infty,-4) \cup\left(-4, \frac{3}{2}\right) \cup\left(\frac{3}{2}, \infty\right) \\
K(x)=\frac{x+3}{x^{2}+4} & 1(x)=\frac{x+3}{x^{2}+4} & R
\end{array}
$$

$$
X \rightarrow C^{+}, x \rightarrow C^{-}, x \rightarrow \infty, x \rightarrow-\infty
$$

$\left.E_{x}\right) \frac{1}{x^{2}}$
Vertical Asymptote: $f(x)=\frac{\rho(x)}{q(x)}$ no common factors
Cis crealzero

$$
x=c \text { is a vertical asymptote }
$$

Ex) $f(x)=\frac{2}{x-3}, g(x)=\frac{x-4}{3 x^{2}+5 x-2} \quad k(x)=\frac{4 x^{2}}{x^{2}+4}$
Holes: $f(x)=\frac{2 x^{2}+5 x+3}{x+1}=\frac{(2 x+3)(x+1)}{x+1}$
Horiz. Asymp: Pretune: If degree of top $<$ bottom $y=0$ is a horizontal asymp
If degree of top $=$ botterm, just

$$
Y=\frac{\text { top coeff }}{\text { bothin }} \text { coff }
$$

$\left.F_{x}\right) \quad f(x)=\frac{x^{2}+\ldots}{x^{4}+\ldots}$

bottom > top
baton $=\operatorname{top} f(x)=\frac{4 x^{2}+\ldots}{3 x^{2}+\ldots}$

bottom $<$ tor
\rightarrow blow ur

$$
E x) f(x)=\frac{8 x^{2}+1}{x^{4}+1}, g(x)=\frac{2 x^{3}-6 x}{x^{2}+4}, h(x)=\frac{8 x^{2}+8 x-5}{2 x^{2}+1}
$$

Q: IA the asymptotes

Slant Asymptote: Rational function has slant a symp. if degree of numerator is exattone greater thad dariom.

- To find, polynomiz I divide.

Ex) $f(x)=\frac{x^{2}+1}{x-1} \quad f(x)=\frac{2 x^{2}-5 x-3}{x-2}$

Graph Trans formations on Rational Functions

$$
f(x)=\frac{1}{(x+2)^{2}}+3
$$

Steps
(1) Determine y int
(3) Vert. asymptote
(6) Symmetry
(4) Horiz asymptote
(7) Sign Chart
(5) Slant asymptote
(8) Ketch

$$
E x) f(x)=\frac{4 x}{x^{2}-4}
$$

Ex)

$$
g(x)=\frac{2 x^{2}-3 x-5}{x^{2}+1}
$$

$$
\text { Ex) } \begin{aligned}
& h(x)=\frac{2 x^{2}+9 x+4}{x+3} \\
& x=-4,-\frac{1}{2} \\
& =(2 x+1)(x+4)
\end{aligned}
$$

3.6-Qundatic/Rational Inequalities

Use sign Chart
(6) Put all terms on one side
: Find zeros onside zero
(2) Find undefpts (combsiexto one friction)
(3) Test in each region tor -
(4) Check inequality
(5) Interval Notation

$$
E x)\left(0 x^{2}-4 x-12 \leq 0\right.
$$

(4) $x^{2}+x>12$
(2) $2 x^{2}<x+10$
(5) $-x^{2}-x+6<0$
(3) $3 x(x-1)>10-2 x$
(6) $2 x(x-1)<21-x$
(7) $x^{4}-12 x \geqslant 8 x^{2}-x^{3} \quad(-2,0,3)$

Rational Inequalities:
Ex) $\frac{4 x-5}{x-2} \leqslant 3 \quad E x \quad \frac{5-x}{x-1} \geqslant-2$
Ex) $\left.\frac{x^{2}}{x^{2}+4} \geqslant 0 \quad E_{x}\right) \quad \frac{x^{2}}{x^{2}+4}<0$
Ex) $\frac{5}{x-3}>\frac{3}{x+1}$ Ex) $\frac{(x+3)(x-5)}{3(x-1)}>0$
Ex) $\frac{x^{2}+4 x-45}{x+1} \leq 0$

Section 2.8 -Functions and Function Composition
Sum: $(f+g)(x)=f(x)+g(x)$
Difference $(f g)(x)=f(x)-g(x)$
Product: $(f \circ g)(\alpha)=f(x) g(x)$
Quotient: $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad g(x) \neq 0$
Ex) $f(x)=\sqrt{25-x^{2}} g(x)=5 x$ Find the above.
Ex) $m(x)=4 x \quad n(x)=|x-1| \quad p(x)=\frac{1}{x+1}$
Find $(m-n)(2),(m \cdot p)(1),\left(\frac{p}{n}\right)(3)$
$\left.E_{x}\right) g(x)=2 x, K(x)=\sqrt{x-1}, h(x)=x^{2}-4 x$
$g(x)=2 x, k(x) \quad \begin{aligned} & (g-h)(x) \\ & \\ & (g, k)(x)\end{aligned} \quad\left(\frac{k}{h}\right)(x) \quad$ and domains of
Finch
Difference Quotient: $\frac{f(x+h) \pi f(x)}{h}$
Find Dill Quotient for

$$
\begin{aligned}
& f(x)=3 x-5 \\
& f(x)=-2 x^{2}+4 x-1 \\
& f(x)=\sqrt{x} \\
& f(x)=1 / x
\end{aligned}
$$

The composition of f and g is fog or $(f \circ g)(x)=f(g(x))$
Ex) $f(x)=x^{2}+2 x \quad g(x)=x-4$
a) $f(g(6))$
c) $g(f(-3))$
b) $(f \circ g)(0)$
d) $(g \circ f)(5)$

Ex)

$$
\begin{aligned}
& f(x)=2 x-6 \quad\left(\begin{array}{l}
(f \circ g)(x) \\
g(x)=\frac{1}{x+4} \quad(g \circ f)(x)
\end{array} \quad\right. \text { domains. }
\end{aligned}
$$

Ex)

$$
\begin{array}{ll}
f(x)=\frac{1}{x-5} & (f \circ g)(x) \\
g(x)=\sqrt{x-2} & (g \circ f)(x)
\end{array}
$$

Word Problems
Ex 9,p.301

Decomposing functions
Let $h(x)=|2 x-5|$ find f, g sit $(f \circ g)(x)=h(x)$
Let $h(x)=\sqrt[3]{5 x+1}$ find " " " "

Section 4.1- Inverse Functions
Defy: A function is $1-1$ if for a and b in the domain of f, if $a \neq b$, then $f(a) \neq f(b)$
So $f(a)=f(b)$ iff $a=b$
Ex) Is $f 1-1$?

$$
\begin{aligned}
& f=\{(1,4),(2,3),(-2,4)\} \\
& f=\{(3,5),(4,5),(-2,1)\} \\
& f(x)=x^{2}
\end{aligned}
$$

Ex) Horizontal Line test

Ex) Show if $f(x)$ is 1-1.

$$
\begin{aligned}
& f(x)=2 x-3 \\
& f(x)=x^{2}+1
\end{aligned}
$$

Befn: Let f be 1-1. Then g is an inverse of f if

$$
\text { (1) }(f \circ g)(x)=x \text { for all } x \text { in domain of } g
$$

(2) $(g \circ f)(x)=x \quad 11 x$ in domain of f

Or

$$
\left(f \circ f^{-1}\right)(x)=x
$$

$$
\left(f^{-1} \circ f\right)(x)=x
$$

Note: $\quad f^{-1} \neq \frac{1}{f}$

Ex) Let $f(x)=100+12 x$. Is $g(x)=\frac{x-100}{12}$ an inverse?
To find inverse,
(1) Replace $f(x)$ by y
(2) Switch y and x
(3) Solve for y
(4) Change y to $f^{-1}(x)$.

Ex)

$$
\begin{array}{ll}
f(x)=3 x-1 & f(x)=\frac{x-2}{x+2} \\
f(x)=4 x+3 & \\
f(x)=\frac{3-x}{x+3} & f(x)=x^{2}+4 x \geqslant 0 \\
& \binom{\text { symumbetc }}{y=x} \\
f(x)=\sqrt{x-1} & f(x)=\sqrt{x+2}
\end{array}
$$

$$
f(x)=\frac{x+4}{2 x-5} \quad \text { Cheek }
$$

Section 4.2- Exponential Enctions
Defn: Let b be a real number, $b>0 b \neq 1$, than $f(x)=b^{x}$ is an exponential function

Examples: $4^{x}, e^{x},\left(\frac{1}{3}\right)^{x},(\sqrt{2})^{x}$ Non Ex: $1^{x},(-4)^{x}, x^{2}$
Graphs of $f(x)=b^{x}$
(1) For $b>1$, exponential growth
(2) For $0<b<1,11$ decay
(3) Domain: $(-\infty, \infty)$
(5) $y=0$ is an $H A$
(4) Range: $(0, \infty)$
(6) $f(0)=b^{\circ}=1 \quad$ intis $(0,1)$

Examples: $2^{x}, 5^{x},\left(\frac{1}{2}\right)^{x}, e^{x} \quad e \approx 2.718$
Graph Transformations: $f(x)=a b^{x-h}+k$
$h>0$ right $k>0$ up $a<0$ reflectover x-axis
$h<0$ left $k<0$ down $0<$ lake 1 vert. shrink $|a|>1$ vert stretch
Graph: $f(x)=3^{x-2}+4$

$$
f(x)=e^{x}
$$

$f(x)=2^{x+2} x-1$

$$
\begin{aligned}
& f(x)=2 \\
& f(x)=-e^{x-2}+2
\end{aligned}
$$

Interest: $A=P+I=P_{+}$Pr
from this we dave some equations see p.449-50 for details

Suppose Pdolkrs invested.
at rate of r \$/yr for t years
(1) $I=\operatorname{Pr} t \quad$ Amount of simple interest I
(2) $A=P\left(1+\frac{r}{n}\right)^{n t}$

Amount after t years n periods per yew
(3) $A=P e^{r t}$

Amount after tyears continocosly
Ex 4p451
Ex) A sample ironing lg of Ra 226 , the amount

$$
A(t)=\left(\frac{1}{2}\right)^{t / 620} \text { after } t \text { time }
$$

How much present after $1620 y$? $4860 y r$
Ans: $05,25,125$-1 $12 \wedge_{3}$

Section 4.3-Logarithmic Equations
Defn: Let abe areal number, $b \neq 1$ b>0

$$
y=\log _{b}(x) \text { is a } \frac{\log _{\text {arritum }} \frac{\text { function }}{\text { with base } b}}{}
$$

Ex: $\log _{10}(x), \log (x), \ln (x), \log _{2}(x)$
Note: $y=\log _{b}(x) \sim b^{y}=x$

$$
\begin{aligned}
f(x) & =b^{x} \\
y & =b^{x} \\
x & =b^{y} \\
\log _{b}(x) & =y
\end{aligned}
$$

Ex)

$$
\begin{aligned}
& \log _{2} 16=4 \quad \Leftrightarrow 16=2^{4} \\
& \log _{10}\left(\frac{1}{100}\right)=-2 \Leftrightarrow \frac{1}{100}=2^{-2} \\
& \log _{7} 1=0 \Leftrightarrow 7^{\circ}=1
\end{aligned}
$$

Ex) Evaluate: $\log _{4} 16, \log _{2} 8, \log _{\frac{1}{2}} 8$
Note: $\log _{10}(x)=\log (x) \quad \log _{e}(x)=\ln (x)$
Ex) $\log (100), \log \left(\frac{1}{10}\right), \ln e^{4}, \ln \left(\frac{1}{e}\right)$
Rules: $\log _{b} 1=0, \log _{b} b=1, \log _{b} b^{x}=x, b^{\log _{b} x}=x$
Graps of $f(x)=\log _{b}(x)$
(1) $b>1$ increasing
(5) $x=0.15$ a $V A$
(2) $b<1$ decreasing
(6) $f(1)=0 \Rightarrow x=1$ is x int
(3) Domain: $(0, \infty)$

Ex's: $\log _{10}(x) \quad \log _{1 / 2}(x)$
(4) Range: $(-\infty, \infty)$ $\ln (x)$

Graph Transformation: $f(x)=a \log _{b}(x-h)+K$

$$
\begin{array}{ll}
h>0 & \text { keffright } \\
h<c & k>0 \text { up } \\
l & k<0 \text { down }
\end{array}
$$

$a<0$ inflection over x
$0<|a|<1$ vert. shank
$|a|>\mid$ vert stretch
Graph:

$$
\begin{aligned}
& f(x)=\log (x-2)+4 \\
& f(x)=\log _{2}(x+3)-2 \\
& f(x)=-\ln (x-1)+1
\end{aligned}
$$

Find domain of each

Section 4.4 - Logarithm Properties
Rules: $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b}(x)-\log _{b}(y) \\
& \log _{b}\left(\frac{x}{y}\right)=p \log _{b}(x)
\end{aligned}
$$

$\log (x+y) \neq$ add or sum er.

Ex) $\left.\log _{2}(8 x) \quad E x\right) \log _{3}\left(\frac{c}{d}\right) \quad \log _{6}\left(\frac{8}{t}\right)$

$\log _{4}(16 a)$
Ex) $\ln \sqrt[5]{x^{2}} \log _{5} \sqrt[5]{x^{4}} \quad \ln x^{4}$
ShorturtRule: $\log \left(\frac{a b}{c}\right)=\log (a)+\log (b)-\log (c)$
Expand logs
Ex) $\log _{2}\left(\frac{z^{3}}{x y^{5}}\right) \quad \log \sqrt[3]{\frac{(x+y)^{2}}{10}}$
$\ln \left(\frac{a^{4} b}{c^{9}}\right) \quad \log _{5}\left(\sqrt[3]{\frac{25}{(\operatorname{aotb})^{2}}}\right)$
Reverse: Combine to one log

$$
\begin{aligned}
& \text { Ex) } \log _{2} 560-\log _{2} 7-\log _{2} 5 \quad 3 \log x-\frac{1}{3} \log y-\frac{2}{3} \log z \\
& 3 \log a-\frac{1}{2} \log b-\frac{1}{2} \log c \quad \frac{1}{3} \ln t+\ln \left(t^{2}-a\right)-\ln (t-3) \\
& \frac{1}{2} \ln x+\ln \left(x^{2}+1\right)-\ln (x+1)
\end{aligned}
$$

Change of base forum

$$
\begin{aligned}
\log _{b} x & =\frac{\log _{a} x}{\log _{a} b} \\
\text { Evaluate } \log _{3}(6) & =\frac{\ln (6)}{\ln (3)} \approx 1.631 \\
\log _{3}(6) & =\frac{\log _{1}(6)}{\log (3)} \approx 1.631
\end{aligned}
$$

Section 4.5- Exponential and Log Eris
Solve:

$$
\begin{aligned}
& 3^{2 x-6}=81 \\
& 25^{4-t}=\left(\frac{1}{5}\right)^{3 t+1} \quad 27^{2 \omega+5}=\left(\frac{1}{3}\right)^{2-5 \omega} \\
& 4^{2 x-3}=64
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& 7^{x}=60 \quad \text { (Multiple solutions) } \\
& 5^{x}=83 \quad
\end{aligned}
$$

Solve: $\quad 4^{2 x-7}=5^{3 x+1}$

$$
3^{5 x-6}=2^{4 x+1}
$$

Solve:

$$
\begin{aligned}
& e^{2 x}+5 e^{x}-36=0 \\
& e^{2 x}-5 e^{x}-14=0
\end{aligned}
$$

Solve: $\log _{2}(3 x-4)=\log _{2}(x+2)$
Always Check

$$
\begin{aligned}
& \log _{2}(7 x-4)=\log _{2}(2 x+1) \\
& 4 \log _{3}(2 t-7)=8 \\
& 8 \log _{4}(\omega+6)=24 \\
& \log _{2} x=3-\log _{2}(x-2) \\
& 2-\log _{7} x=\log _{7}(x-48)
\end{aligned}
$$

Answers

$$
\begin{aligned}
& \text { Ex) } \\
& \ln (x-4)=\ln (x+6)-\ln (x) \\
& \ln x+\ln (x-8)=\ln (x-20) \\
& \text { Ex) } A=P\left(1+\frac{r}{n}\right)^{n t}
\end{aligned}
$$

How long willis. take $\$ 4000$ invest wont to double with a 4.5\% in rest rate compounded monthly?

$$
t=15.4
$$

Section 4.6 - Modeling with Exponential $+\log$ Functions
Ex) Given $P=100 e^{k x}-100$ solve for x (geology)
" $L=8.8+5.1 \log D$ solve for D (castro)

$$
\begin{aligned}
& T=78+272 e^{-k t} \quad \text { find } k \\
& S=90-20 \ln (t+1) \quad \text { find } t
\end{aligned}
$$

Let y be a variable changing exponentially
Yo be initial condition for y at $t=0$

1) If $k>0 \quad y=y_{0} e^{k t}$
2) If $k<0, y=y_{0} e^{k t}$
is exponential growth is exponential decay

$$
y=2000 e^{.06 t}
$$

$$
y=100 e^{-.165 t}
$$

continuous compound interact. Radioactive treatment Iodure
$E x) A=P e^{r t}$

$$
\begin{aligned}
& P=15,000 \\
& t=3 \Rightarrow A=19,856.92
\end{aligned}
$$

find rate: $r=.085$
$E x) \quad P(t)=P_{0} e^{k t}$
a) $P_{0}=15$
$P(5)=30$ find K
b) Find $P(10)$
c) Find time to reach $45=P(t)$

Recall: $\quad b^{t}=e^{\ln (b) t}$
Ex)

$$
\begin{aligned}
P(t) & =5000(2)^{t / 4} \\
& =5000\left(2^{t}\right)^{1 / 4} \\
& =5000 e^{(\ln 3 / 4) t}
\end{aligned}
$$

Ex) $Q(t)=Q_{0} e^{-x t} \quad C_{14}$ has half line 5730 Find K : Hint $Q(t)=5 Q_{0}$

$$
k \approx .000121
$$

Logistic Growth
Logistic Growth Model: $\quad y=\frac{C}{1+a e^{-b t}}$
Ex) $P(t)=\frac{95.2}{1+18 e^{-.018 t}} \quad$ Pop of CA. $t=\#$ yeursufter 2000
a) Population in 2000? $P(0)=34$
b) Population to double? $t=83.6$
c) Limiting value of population? 95.2 million

