Name: \qquad Score: \qquad / 100

Student ID:

\qquad

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

	1	2	3	4	5	6	Total
\checkmark							
Score							

INSTRUCTIONS FOR STUDENTS

- Questions are on both sides of the paper. This is an 5 question exam (One extra credit problem can be attempted for a total of 6 questions).
- Students have 50 minutes to complete the exam.
- PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit. Clearly box your final answer.
- You MUST complete 5 problems for credit. In the above table in the row with the \checkmark, please mark with a \checkmark which problems you want to be graded. If you wish to do a $6^{\text {th }}$ problem for extra credit, please write $E C$ in the \checkmark row for the problem you wish to be counted for extra credit.
- No notes, textbooks, phones, calculators, etc. are allowed for the exam.
- Each of the 5 questions you choose to do will be graded out of 4 points. The score will then be totaled and multiplied by 5 to get a raw score out of 100 points. If you choose to do a $6^{t h}$ problem for extra credit, the most that will be awarded for that question will be 3 points. So, the highest possible score on this examination is 103 points out of 100 .
- The back of the test can be used for scratch work.

1) Solve the following system of equations for x, y, and z using any method.

$$
\left\{\begin{array}{l}
x-3 y+3 z=-4 \\
2 x+3 y-z=15 \\
4 x-3 y-z=19
\end{array}\right.
$$

2) Solve the following system of equations for x and y.

$$
\left\{\begin{array}{l}
x^{2}+2 y^{2}=9 \\
x^{2}-2 y^{2}=-7
\end{array}\right.
$$

3) Graph the solution set for the following.

$$
\left\{\begin{array}{l}
x^{2}+y^{2} \leq 16 \\
\frac{(x-1)^{2}}{9}+\frac{y^{2}}{25} \geq 1
\end{array}\right.
$$

4) Solve the following system using Gaussian elimination or Gauss-Jordan elimination.

$$
\left\{\begin{array}{l}
x-3 y+z=4 \\
2 x-8 y+8 z=-2 \\
-6 x+3 y-15 z=9
\end{array}\right.
$$

5) Compute $B \cdot A$ for the following matrices:

$$
A=\left(\begin{array}{lll}
1 & 4 & 2 \\
1 & 3 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 3 \\
2 & 1 \\
1 & 2
\end{array}\right)
$$

6) Solve the following system of equations using the inverse matrix, A^{-1}.

$$
\left\{\begin{aligned}
x+y & =1 \\
x+y+z & =2 \\
y+z & =3
\end{aligned}\right.
$$

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK

