\qquad Score: \qquad / 100

Student ID:

\qquad

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

	1	2	3	4	5	6	7	8	9	10	Total
\checkmark											27
Score											
Pts. Possible	3	3	3	3	3	3	3	3	3	3	29

INSTRUCTIONS FOR STUDENTS

- Questions are on both sides of the paper. This is an 10 question exam.
- Students have 2 hours and 15 minutes to complete the exam.
- The test will be out of $\mathbf{2 7}$ points. The highest possible score will be $\mathbf{2 9}$ points. You must complete 9 problems for credit (3 points each, 27 points total). If you wish, you can attempt a $10^{\text {th }}$ problem for extra credit. That question will be out of 2 points, for a maximum of 29 possible points.
- In the above table, the row with the \checkmark should be marked for the 9 questions you want graded. Mark EC for the extra credit problem.
- You may complete parts of problems, as partial credit will be given based on correctness, completeness, and ideas that are leading to the correct solutions.
- PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit. Clearly box your final answer.
- No notes, textbooks, phones, calculators, etc. are allowed for the exam.
- The back of the test can be used for scratch work.

GOOD LUCK!

FORMULAS:

Name	Formula
Foci for ellipse	$c^{2}=a^{2}-b^{2}, a>b$
Foci for hyperbola	$c^{2}=a^{2}+b^{2}$
$n^{\text {th }}$ term of Arithmetic Series	$a_{n}=a_{1}+(n-1) d$
Sum of Arithmetic Series	$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
Finite Geometric Series	$\sum_{j=1}^{n} a r^{j-1}=\frac{a\left(1-r^{n}\right)}{1-r}$
Infinite Geometric Series	$\sum_{j=1}^{\infty} a r^{j-1}=\frac{a}{1-r}$
Binomial coefficients	$\binom{n}{r}=\frac{n!}{r!\cdot(n-r)!}$
Binomial Theorem	$(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}$

1) Graph the following function. Clearly label all asymptotes and the x and y-intercepts.

$$
f(x)=-\left(\frac{1}{4}\right)^{x-1}+1
$$

2) (a) Combine the logarithms into one logarithm:

$$
3 \log _{2}(x)-4 \log _{2}(x+3)+\log _{2}(y)-\log _{2}(2)
$$

(b) Solve following exponential equation for x :

$$
4^{x+2}=\left(\frac{1}{32}\right)^{1-x}
$$

3) Solve the following system of equations.

$$
\left\{\begin{array}{c}
x-6 y+4 z=-12 \\
x+y-4 z=12 \\
2 x+2 y+5 z=-15
\end{array}\right.
$$

4) Write an equation for the ellipse having foci at $(0,2)$ and $(0,-2)$, and vertices at $(0,3)$, and $(0,-3)$.
5) Write the following equation for the hyperbola in standard form. Then identify the center and the values of a and b.

$$
9 x^{2}-4 y^{2}-36 x+48 y-144=0
$$

6) (a) Find the general term in the sequence:

$$
\left\{a_{n}\right\}=-\frac{3}{2}, \frac{7}{4},-\frac{11}{8}, \frac{15}{16},-\frac{19}{32}, \ldots
$$

(b) Find the following sum using the general term found in part (a):

$$
\sum_{n=1}^{4}\left\{a_{n}\right\}
$$

7) Consider the sequence $\left\{a_{n}\right\}=\left\{3,-1, \frac{1}{3},-\frac{1}{9}, \frac{1}{27}, \ldots.\right\}$.
a) Identify the type of sequence $\left\{a_{n}\right\}$.
b) What is the value of the term a_{11} ? (Leave the answer as a fraction)
c) Find the sum of the following series: $\sum_{n=1}^{\infty} a_{n}$
8) Use induction to prove:

$$
S_{n}=\sum_{j=1}^{n} j=\frac{n(n+1)}{2}
$$

9) Use the binomial theorem to determine the $7^{\text {th }}$ term in the expansion of $\left(2 x+y^{4}\right)^{10}$
10) Suppose you flip a biased coin so that the probability of getting heads is $a=\frac{3}{4}$, or 75%. What is the probability of getting heads 2 times and tails once? (You can leave your answer as a fraction).

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK

