Name: \qquad Score: \qquad / 100

Student ID:

\qquad

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

	1	2	3	4	5	6	7	8	9	10	Total
\checkmark											27
Score											
Pts. Possible	3	3	3	3	3	3	3	3	3	3	29

INSTRUCTIONS FOR STUDENTS

- Questions are on both sides of the paper. This is an 10 question exam.
- Students have 2 hours and 15 minutes to complete the exam.
- The test will be out of 27 points. The highest possible score will be 29 points. You must complete 9 problems for credit (3 points each, 27 points total). If you wish, you can attempt a $10^{t h}$ problem for extra credit. That question will be out of 2 points, for a maximum of 29 possible points.
- In the above table, the row with the \checkmark should be marked for the 9 questions you want graded. Mark EC for the extra credit problem.
- You may complete parts of problems, as partial credit will be given based on correctness, completeness, and ideas that are leading to the correct solutions.
- PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit. Clearly box your final answer.
- No notes, textbooks, phones, calculators, etc. are allowed for the exam.
- The back of the test can be used for scratch work.

GOOD LUCK!

FORMULAS:

Name	Formula
Foci for ellipse	$c^{2}=a^{2}-b^{2}, a>b$
Foci for hyperbola	$c^{2}=a^{2}+b^{2}$
$n^{t h}$ term of Arithmetic Series	$a_{n}=a_{1}+(n-1) d$
Sum of Arithmetic Series	$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
Finite Geometric Series	$\sum_{j=1}^{n} a r^{j-1}=\frac{a\left(1-r^{n}\right)}{1-r}$
Infinite Geometric Series	$\sum_{j=1}^{\infty} a r^{j-1}=\frac{a}{1-r}$
Binomial coefficients	$\binom{n}{r}=\frac{n!}{r!\cdot(n-r)!}$
Binomial Theorem	$(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}$

1) Graph the following function. Clearly label all asymptotes and the x and y-intercepts.

$$
f(x)=-4^{x+1}-2
$$

2) (a) Solve the following logarithmic equation for x :

$$
\log _{3}(y)+\log _{3}(y+6)=3
$$

(b) Solve following exponential equation for x :

$$
5^{3 x-8}=25^{2 x}
$$

3) Solve the following system of equations.

$$
\left\{\begin{array}{c}
-2 x+5 y-4 z=-4 \\
x-2 y+z=3 \\
x-5 y+9 z=-5
\end{array}\right.
$$

4) Write an equation for the ellipse having foci at $(0,1)$ and $(8,1)$, a x-vertices at $(-1,1)$, and $(9,1)$.
5) Write the following equation for the ellipse in standard form. Then identify the values for h, k, a, b.

$$
3 x^{2}+2 y^{2}-30 x-4 y+59=0
$$

6) (a) Find the general term in the sequence:

$$
\left\{a_{n}\right\}=\frac{2}{2},-\frac{5}{4}, \frac{8}{8},-\frac{11}{16}, \frac{14}{32},-\frac{17}{64}, \frac{20}{128}, \ldots
$$

(b) Find the following sum using the general term found in part (a):

$$
\sum_{n=1}^{4}\left\{a_{n}\right\}
$$

7) Consider the sequence $\left\{a_{j}\right\}=\{1,6,11,16,21, \ldots$.$\} .$
a) Identify the type of sequence $\left\{a_{j}\right\}$.
b) What is the value of the term a_{100} ?
c) Find the sum of the first 50 terms.
8) Use induction to prove:

$$
2+6+10+\ldots+(4 n-2)=2 n^{2} \quad \text { for positive integers } n \geq 1
$$

9) Use the binomial theorem to expand $(2 x+3 y)^{5}$
10) Find the $8^{t h}$ term in the expansion of $\left(2 a+b^{4}\right)^{10}$.

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK

