Name: \qquad Score: \qquad / 100

Student ID:

\qquad

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

	1	2	3	4	5	6	7	8	9	10	Total
\checkmark											27
Score											
Pts. Possible	3	3	3	3	3	3	3	3	3	3	29

INSTRUCTIONS FOR STUDENTS

- Questions are on both sides of the paper. This is an 10 question exam.
- Students have 2 hours and 15 minutes to complete the exam.
- The test will be out of 27 points. The highest possible score will be 29 points. You must complete 9 problems for credit (3 points each, 27 points total). If you wish, you can attempt a $10^{\text {th }}$ problem for extra credit. That question will be out of 2 points, for a maximum of 29 possible points.
- In the above table, the row with the \checkmark should be marked for the 9 questions you want graded. Mark EC for the extra credit problem.
- You may complete parts of problems, as partial credit will be given based on correctness, completeness, and ideas that are leading to the correct solutions.
- PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit. Clearly box your final answer.
- No notes, textbooks, phones, calculators, etc. are allowed for the exam.
- The back of the test can be used for scratch work.

GOOD LUCK!

1) Solve the following system of linear equations:

$$
\begin{cases}2 x-3 y & =-2 \\ 4 x+y & =24\end{cases}
$$

2) Solve the following system of linear equations:

$$
\begin{cases}2 x+7 y+11 z & =11 \\ x+2 y+8 z & =14 \\ x+3 y+6 z & =8\end{cases}
$$

3) Solve the following system of nonlinear equations (Hint: The graph may be helpful.):

$$
\begin{cases}2 x^{2}+y^{2} & =24 \\ x^{2}-y^{2} & =-12\end{cases}
$$

4) Graph the solution set of the following system of inequalities:

$$
\begin{cases}x^{2}+2 y^{2} & \leq 24 \\ -x^{2}+y^{2} & \leq-12\end{cases}
$$

5) A carpentry shop makes tables and and desks. Each week, the shop has to complete at least 9 tables and 13 desks. The shop can make at most 30 tables and desks combined, per week. If the shop sells tables for $\$ 120$ and desks for $\$ 150$, how many of each should be made to maximize weekly income for the shop?
6) Solve the following system using Gaussian elimination or Gauss-Jordan elimination.

$$
\begin{cases}3 x+7 y+22 z & =83 \\ x+3 y+10 z & =37 \\ -2 x-5 y-18 z & =-66\end{cases}
$$

7) Solve the following system using Gaussian elimination or Gauss-Jordan elimination.

$$
\begin{cases}x-3 y-17 z & =-17 \\ -2 x+7 y+38 z & =40\end{cases}
$$

8) Compute $A \cdot B$ for the following matrices:

$$
A=\left(\begin{array}{ll}
1 & 4 \\
8 & 3
\end{array}\right) \quad B=\left(\begin{array}{ll}
2 & 5 \\
1 & 6
\end{array}\right)
$$

9) The matrix A is below. Find its determinant, $\operatorname{det}(A)$.

$$
A=\left[\begin{array}{ccc}
7 & 2 & 1 \\
0 & 3 & -1 \\
-3 & 4 & -2
\end{array}\right]
$$

10) The matrix A is below. Find its inverse matrix, A^{-1}.

$$
A=\left(\begin{array}{ll}
9 & 7 \\
5 & 3
\end{array}\right)
$$

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK

