\qquad Score: \qquad / 100

Student ID:

\qquad

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

	1	2	3	4	5	6	7	8	9	Total
\checkmark										70
Score										
Pts. Possible	6	8	8	8	8	8	12	12	12	82

INSTRUCTIONS FOR STUDENTS

- Questions are on both sides of the paper. This is an 9 question exam.
- Students have 2 hours and 15 minutes to complete the exam.
- The test will be out of $\mathbf{7 0}$ points. The highest possible score will be $\mathbf{8 2}$ points. You can attempt as many of the questions as you wish, but keep in mind you are trying to get to the $\mathbf{7 0}$ points.
- In the above table, the row with the \checkmark, is for you to keep track of the problems you are attempting/completing.
- Higher point problems are harder, thus they are weighted more. In order to do well, you will have to attempt some of the more difficult problems.
- You may complete parts of problems, as partial credit will be given based on correctness, completeness, and ideas that are leading to the correct solutions.
- PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit. This means you need to state which test you are using for series questions! Clearly box your final answer.
- No notes, textbooks, phones, calculators, etc. are allowed for the exam.
- The back of the test can be used for scratch work.

GOOD LUCK!

FORMULAS:

Common Taylor Series	Common Taylor Series
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad$ for all $\|x\|<1$	$\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad$ for all $x \in \mathbb{R}$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad$ for all $x \in \mathbb{R}$	$\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \quad$ for all $x \in \mathbb{R}$
$\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}, \quad$ for $x \in(-1,1]$	$\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \quad$ for $\|x\| \leq 1$
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}, \quad$ for $\|x-a\|<R$	$(1+x)^{m}=\sum_{n=0}^{\infty}\binom{m}{n} x^{n}, \quad$ for $\|x\|<1$

1) (3 pts.) (a) Determine whether the sequence converges or diverges:

$$
a_{n}=\frac{\cos ^{2}(n)}{2^{n}}
$$

(3 pts.) (b) Determine whether the series converges or diverges. If it converges, find its sum:

$$
\sum_{n=1}^{\infty} \arctan (n)
$$

2) (6 pts.) Determine whether the series is convergent or divergent

$$
\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}
$$

3) (8 pts.) Determine whether the series is convergent or divergent

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+1}
$$

4) (4 pts.) (a) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=1}^{\infty} \frac{n!}{e^{n^{2}}}
$$

(4 pts.) (b) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}
$$

5) (8 pts.) Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2}-1}}
$$

6) (8 pts.) Find the radius of convergence and interval of convergence for the following power series (This is known as the Bessel function of order 1):

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{n!(n+1)!2^{2 n+1}}
$$

7) (6 pts.) (a) Compute the following integral using Taylor series. State the radius of convergence. (Hint: Be careful about the $n=0$ term, you can't have 0/0.)

$$
\int \frac{e^{x}}{x} d x
$$

(6 pts.) (b) Find the Taylor series centered at $a=0$, and state the radius of convergence.

$$
f(x)=\ln (x)
$$

8) (6 pts.) (a) Eliminate the parameter in the for the following parametric equation

$$
x=4 \cos (t)+2 \quad y=2 \sin (t)+1
$$

(2 pts.) (b) Identify the type of graph from your result in part (a).
(4 pts.) (c) Compute $\frac{d y}{d x}$. What coordinates have a tangent line with slope 0 ?
9) (12 pts.) Find the area of the region that lies inside the polar roses (the region is shaded in the labeled plot below).

Hint 1: Use the symmetry at $\frac{\pi}{8}$ to simplify the integral. How many pieces do you really have? Hint 2: Use the identity: $\sin ^{2}(2 \theta)=\frac{1}{2}-\frac{1}{2} \cos (4 \theta)$.

$$
\begin{gathered}
r=\cos (2 \theta) \\
r=\sin (2 \theta)
\end{gathered}
$$

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK

