\qquad
\qquad / 50

Student ID:

\qquad

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

	1	2	3	4	5	6	7	8	9	Total
\checkmark										50
Score										
Pts. Possible	X	X	X	X	X	X	X	X	X	54

INSTRUCTIONS FOR STUDENTS

- Questions are on both sides of the paper. This is an 9 question exam.
- Students have 2 hours and 15 minutes to complete the exam.
- The test will be out of $\mathbf{5 0}$ points. The highest possible score will be $\mathbf{5 4}$ points. You can attempt as many of the questions as you wish, but keep in mind you are trying to get to the $\mathbf{5 0}$ points.
- In the above table, the row with the \checkmark, is for you to keep track of the problems you are attempting/completing.
- Higher point problems are harder, thus they are weighted more. In order to do well, you will have to attempt some of the more difficult problems.
- You may complete parts of problems, as partial credit will be given based on correctness, completeness, and ideas that are leading to the correct solutions.
- PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit. Clearly box your final answer.
- No notes, textbooks, phones, calculators, etc. are allowed for the exam.
- The back of the test can be used for scratch work.

GOOD LUCK!

FORMULAS:

Useful Formulas	Useful Formulas
$\frac{d(\arcsin (x))}{d x}=\frac{1}{\sqrt{1-x^{2}}} \quad\|u\|<1$	$\int \frac{d x}{\sqrt{a^{2}+x^{2}}}=\arcsin \left(\frac{x}{a}\right)+C$
$\frac{d(\arccos (x))}{d x}=-\frac{1}{\sqrt{1-x^{2}}} \quad\|u\|<1$	$\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C$
$\frac{d(\arctan (x))}{d x}=\frac{1}{1+x^{2}}$	$\int \frac{d x}{u \sqrt{a^{2}-x^{2}}}=\frac{1}{a} \operatorname{arcsec}\left\|\frac{x}{a}\right\|+C$

1) Find the volume of the solid generated by revolving the function $y=f(x)=4+\sin (x)$ with $0 \leq x \leq 2 \pi$ about the x-axis.
2) Find the area of the surface generated by rotating the loop of the curve $9 y^{2}=x(3-x)^{2}$ about the x-axis.
3) A spring has natural length of 20 cm . Compare the work, W_{1}, done by stretching the spring from 20 cm to 30 cm , to the work W_{2}, done by stretching the spring from 30 cm to 40 cm . How are W_{1} and W_{2} related?
4) Solve the initial value problem

$$
\frac{d y}{d x}=\frac{1}{x^{2}+1}-\frac{2}{\sqrt{1-x^{2}}}, \quad y(0)=2
$$

5) Compute the following integral

$$
\int x^{2} \sin (2 x) d x
$$

6) Evaluate the integral

$$
\int \sin ^{2}(x) \cos ^{4}(x) d x
$$

7) Evaluate the integral

$$
\int \frac{\sqrt{1+x^{2}}}{x} d x
$$

8) Evaluate the following integral.

$$
\int \frac{1}{x^{2}-1} d x
$$

9) Evaluate the integral

$$
\int_{-1}^{0} \frac{e^{1 / x}}{x^{3}} d x
$$

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK

