Section 1.1 - Limits

Consider \(y = \frac{\sin x}{x} \). When \(x \) is near 1, where is \(y \) "close" to?

Look at graph, one can see \(y \approx \frac{\sin(1)}{1} \).

\[\Rightarrow x \text{ "near" } 1 \Rightarrow y \text{ near } 0.84. \]

What happens when \(y = \frac{\sin x}{x} = \frac{\sin 0}{0} \rightarrow \frac{0}{0} \) ???

Ex) \(\lim_{x \to 1} f(x) = L \Rightarrow \lim_{x \to 1} \frac{\sin x}{x} \approx 0.84 \)

Do a chart to see

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{\sin x}{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.1</td>
<td>0.998</td>
</tr>
<tr>
<td>-0.01</td>
<td>0.999</td>
</tr>
<tr>
<td>-0.001</td>
<td>Undef</td>
</tr>
<tr>
<td>0</td>
<td>0.999</td>
</tr>
<tr>
<td>0.01</td>
<td>0.998</td>
</tr>
</tbody>
</table>

Ex) \(\lim_{x \to 3} \frac{x^3-x-6}{6x^2-19x+3} \)

Ex) \(f(x) = \begin{cases} x+1 & x<0 \\ -x^2+1 & x>0 \end{cases} \quad \lim_{x \to 0} f(x) = ? \)

Limits fail to exist if:

1. \(f(x) \) approaches different values on either side of \(c \)
2. \(f(x) \) grows without upper or lower bounds as \(x \to c \)
3. The function may oscillate as \(x \to c \)

Ex) \(\lim_{x \to 1} f(x) \) for \(f(x) = \begin{cases} x^2-2+3 & x \leq 1 \\ x & x>1 \end{cases} \)
\[\lim_{x \to 1} \frac{1}{(x-1)^2} \]
\[\lim_{x \to 0} \sin \left(\frac{1}{x} \right) \]

Limits of difference quotients

What is \(\lim_{h \to 0} \frac{f(h+1) - f(1)}{h} \) ?

\[
f(x)\]

\[
\begin{align*}
f(5) - f(1) &= \frac{20 - 10}{5 - 1} = \frac{10}{4} = 2.5 \\
\Rightarrow \text{Average velocity}
\end{align*}
\]

Now what about \(\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} \) ?

Pictorially:
Section 1.2 - \(\varepsilon \delta \) definition of Limit

Definition: Let \(I \) be an open interval containing \(c \), and let \(f \) be defined on \(I \), except possibly at \(c \). The limit of \(f(x) \) as \(x \) approaches \(c \) is \(L \), denoted by

\[
\lim_{{x \to c}} f(x) = L
\]

means that given any \(\varepsilon > 0 \), there exists \(\delta > 0 \) s.t.
for all \(x \neq c \) if \(|x - c| < \delta \), then \(|f(x) - L| < \varepsilon \)

Ex: Show \(\lim_{{x \to 2}} x^2 = 4 \)