1. Solve the following ODE using Method of Undetermined Coefficients:

\[y'' - 4y' - 12y = 32e^{2t} \]

Solution: The homogeneous problem is:

\[y'' - 4y' - 12y = 0 \]

And we solve it using the characteristic equation

\[\lambda^2 - 4\lambda - 12 = 0 \]

\[(\lambda - 6)(\lambda + 2) = 0 \]

So we have that \(\lambda = -2, 6 \). So the homogeneous solution is

\[y_h(t) = c_1 e^{-2t} + c_2 e^{6t} \]

Now for the particular solution, we choose \(y_p(t) = Ae^{2t} \). Plugging into the ODE, we have

\[4Ae^{2t} - 8Ae^{2t} - 12Ae^{2t} = 32e^{2t} \]

\[-16Ae^{2t} = 32e^{2t} \]

So we have that \(-16A = 32\) so \(A = -2 \). Then the particular solution is \(y_p(t) = -2e^{2t} \).

So the general solution:

\[y(t) = y_h(t) + y_p(t) \]

\[y(t) = c_1 e^{-2t} + c_2 e^{6t} - 2e^{2t} \]