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Abstract: A hybrid method based on the multi-domain spectral and finite
difference methods is considered for computing the power-law decay of
gravitational radiation waveforms. For the radiation boundary condition,
we adopt the analytic radiation boundary condition based on the Laplace
transformation of kernel functions developed by Lau (2005). In this note, we
present several numerical results for the orbital index l = 2 with the hybrid
and Lau’s method. The Lau’s method enables the hybrid method to obtain
the power-law decay even when the computational domain is small, but the
numerical results show that the proper power-law decay rate, p = 7 is not
obtained. Instead, we obtained p ∼ 4, which corresponds to the power-law
decay rate extracted when the outer domain goes to ∞. We remark that the
system of equations or high order method with high precision is necessary
for obtaining the proper decay rate.
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1 Introduction

An in-depth understanding of the decay pattern of the gravitational radiation waveforms
is important in studying the black-hole system with colliding objects moving toward the
black-hole (Baumgarte and Shapiro, 2011). Price showed that the late-time waveform
decays according to t−(2l+3), where t is the time and l is the orbital index (Price, 1972).
The power of the late-time power-law decay depends on the initial profile of the system
(Avalos and Lousto, 2005). The late-time decay pattern is also related to the gravitational
theory. For example, the late-time decay of the gravitational wave predicted by the
general relativity has a different pattern from the one predicted by the string theory.
Thus detecting the late-time decay of the gravitational wave will significantly impact our
understanding of the dynamics of the gravitational system and the gravitational theory
as well although the experimental complexity is challenging.

Due to the nonlinearity and experimental complexity, it is crucial to construct a
reliable computational methodology to calculate the late-time decay of the gravitational
radiation. For this, various numerical methods have been developed to calculate
accurately the proper decay profile of the gravitational radiation waveforms. For some
of the gravitational systems such as the Schwarzschild space-time, the analytic decay
patterns are known, which is characterised by the power-law decay following the
quasi-normal decay. The developed computational methods are verified by comparing
the analytic power-law decays with the computationally obtained late-time decays. The
frequency domain approaches, e.g., Glampedakis (2005) yield highly accurate results
but the application is only limited to simple cases. Instead, the time-domain approaches
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have more flexibility. There are numerous time-domain methods developed. It is not
practical to list all of them here but many of them are based on the higher-order finite
difference methods including the pioneering works by Davis et al. (1971) and by Lousto
and his co-workers (Lousto and Price, 1997).

The main computational difficulty of the time-domain method is to deal with
the artificial boundary created by the truncation of the computational domain. For
scalar perturbations in the Schwarzschild space-time, the gravitational radiation, Ψ(τ)
propagates according to the second order wave equation in (1 + 1)D coupled with the
potential function V (ρ) with the space coordinate ρ and time coordinate τ . The potential
function is vanishing as ρ→ ∞, but only algebraically. For the time-domain method,
the computational domain is truncated at ρ = ρB <<∞. The boundary condition at
ρB should satisfy the radiation boundary condition. In (1 + 1)D, the outgoing boundary
condition is given by the Sommerfeld boundary condition such as Ψτ + cΨρ = 0
where c = 1 when ρ→ ∞. However, due to the non-vanishing potential function, the
truncation of the computational domain makes the homogeneous Sommerfeld boundary
condition insufficient and produces artificial reflections, which prevents the proper
power-law decay.

To avoid this problem, one can extend the computational domain large enough so
that the potential effect is minimised. However, this approach is costly. In our previous
research, we combined the multi-domain spectral method and the finite difference
method to reduce the computational cost. We successfully obtained the proper power-law
decay with a small value of ρB (Chakraborty et al., 2011). The idea of the hybrid method
is that the local method, i.e., the finite difference method is used for the boundary
domain and the interior domain is taken care of by the global method, e.g., the spectral
method. With the hybridisation, we could reduce the boundary effects while maintaining
the high-order accuracy. However, this approach may fail when ρB is arbitrarily small.

Alternatively, Lau (2004) and Benedict et al. (2012) developed an analytic approach
to find the exact radiation boundary condition. Lau used the Laplace transformation
of kernel functions and derived the exact radiation boundary conditions. The boundary
condition is given in the form of the modified radiation boundary condition in
(1 + 1)D by adding the convolution term C in the homogeneous Sommerfeld condition,
i.e., Ψτ + cΨρ = C(ρ, τ). The convolution function is a function of ρB and τ . The
convolution function contains the whole history of Ψ(τ) from τ = 0 at ρ = ρB . The
main advantage of Lau’s method is that ρB can be arbitrarily small.

In this paper, we adopt Lau’s analytic boundary condition in our hybrid method.
The main goal of this paper is to apply Lau’s analytic boundary condition to our
hybrid method in order to further reduce the computational cost by having smaller ρB .
Combining Lau’s boundary condition, we check how our spectral and finite difference
hybrid method performs for the small value of ρB . We also use the spectral filtering
method. For the hybrid method, the exit boundary domain is treated by the finite
difference method. The interior domain is treated by the multi-domain spectral method.
For the stable patching, we use the fourth order patching conditions. The patching of
two adjacent spectral domains is straightforward. For the patching of the spectral and
finite difference domains, we use the fourth order finite difference patching using the
Lagrange interpolation to address the grid non-uniformity across the finite difference and
spectral domain interface. Lau’s analytic boundary condition is adopted in the hybrid
method by updating the solution at the boundary of the exit domain. The solution at
the boundary is obtained from the boundary condition that is given by the first order
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wave equation with the convolution term C(τ) as a source term. The advection part in
the left hand side is approximated using the first order finite difference method. The
convolution function C(τ) contains the information of the history of Ψ at ρB which
is given in an integral form. Instead of saving all the history of the solution at ρB to
calculate the integral, we use the recursive relation of C(τ + δτ) = C(τ) + δC. For
this, Ψ is interpolated using the first order approximation in the interval of [τ, τ + δτ ],
which is more efficient than the direct integration.

For the numerical experiments, we choose the orbital index l = 2 and use the
Zerilli potential, for which the proper power-law decay has the power of p = −7.
The computational domain is truncated at ρB = 15. Note that the value of ρB = 15
is very small compared to the value of ρB = 387.5 used in our previous research for
the hybrid method (Chakraborty et al., 2011). Our numerical results show that if the
first-order Sommerfeld radiation boundary condition is used without Lau’s method, no
power-law decay was obtained at all. However, when combined with Lau’s analytic
boundary condition, the hybrid method yields the power decay of p ∼ −4. But the decay
is much slower than the correct decay of p = −7. That is, Lau’s method makes the
hybrid method yield the power-law decay successfully but the correct power was not
achieved. We tried several different numerical simulations with various grid resolutions
and various values of ρB , each of which shows the same result. Thus we remark, in
this paper, that our numerical results may imply that high precision is required or more
consistent way of numerical method, such as rewriting the given equation into system
is required for obtaining the proper power-law decay. The current approach uses the
second order wave equation combined with the first order radiation boundary condition.
The inconsistency in order in these equations causes significant computational errors at
the boundary as shown in the paper. Similar result was reported in Khanna (2013) where
increasing the resolution does not yield the proper decay rate. In Khanna (2013), it is
shown that the higher precision computation or higher-order formulation are required
for obtaining the proper decay order rather than increasing the grid resolution.

This note is organised as follows. In Section 2, we briefly explain Lau’s analytic
boundary condition. In Section 3, the first order approximation is used to derive
the recursion formula for the convolution function. In Section 4, we explain the
computational methods adopted in this paper, i.e., the multi-domain spectral and finite
difference hybrid method and the spectral filtering method. In Section 5, numerical
results are presented. In Section 6, a brief concluding remark is given.

2 Analytic radiation boundary condition: Lau’s method

In this work, we will consider the Schwarzschild system. The gravitational wave, Ψ, of
the scalar perturbation on the Schwarzschild space-time is a function of dimensionless
time and radial distance, denoted by τ and ρ, respectively. These non-dimensional
parameters are derived from the physical coordinates of the Schwarzschild space-time
with time, t, and radial distance, r, by the following relations

t = 2Mτ, (1)

r = 2Mρ, (2)
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where M(= 1) is the black-hole mass, and we normalise the equation such that the
new dimensionless variables defined above, allow the Schwarzschild metric to be
re-written as

ds2 = −Fdτ + F−1dρ2 + ρ2(dθ2 + sin2 θdϕ2), (3)

where F = 1− ρ−1, and θ,ϕ are the angular coordinates, which are ignored due to
the radial symmetry in this paper. Using the Regge-Wheeler tortoise coordinate, ρ∗,
a change in variables can be made using the substitution ρ∗ = ρ− log(ρ− 1). The
gravitational wave perturbations abide by the following wave equation with V Z(ρ)
being the Zerilli potential

∂2Ψ

∂τ2
− ∂2Ψ

∂ρ2∗
+ V Z(ρ)Ψ = 0. (4)

The Zerilli potential, V Z(ρ) in equation (4) can be exactly described as

V Z(ρ) =

(
1− 1

ρ

)(
8n2(n+ 1)ρ3 + 12n2ρ3 + 18nρ+ 9

ρ3(2nρ+ 3)2

)
, (5)

with n = 1
2 (l − 1)(l + 2), where l is the orbital index and for our case l = 2.

Note that the Zerilli potential decays only algebraically. Due to the nature of the
Schwarzschild geometry being static, the variable coefficients of the wave equation are
not τ -dependent, so the Laplace transform can be applied to equation (4).

To solve equation (4) numerically, one needs to truncate the numerical domain.
Once truncated, the artificial domain boundary may cause non-physical reflections
coupled with the potential term if the given boundary condition is not exact. This
is because of the long ranging potential term in the equation. If the computational
domain is large enough, the boundary effect is reduced. Also, the power-law decay
can be obtained inside the computational domain before the boundary effect propagates
back to the point where the waveform is collected with time. However, having the
computational domain large is computationally expensive. Alternatively, Lau found the
exact radiation boundary condition. Lau (2004) developed the non-reflecting boundary
condition (NRBC) based on the Laplace transformation technique.

Here we review Lau’s method briefly. Applying the formal Laplace transform to
equation (4), the following ordinary differential equation (ODE) is obtained:

∂2Ψ̂

∂ρ2∗
− (σ2 + V Z(ρ))Ψ̂ = 0. (6)

The value of σ is the frequency variable obtained by applying the Laplace transform to
the second partial derivative with respect to τ . The variable Ψ̂ represents the Laplace
transform of the gravitational wave Ψ. The ODE is a special case of the confluent Heun
equation which can be solved with a change of variables as outlined in Lau (2004).
Since singular points arise in the analysis of the new ODE, the wave equation must be
normalised at infinity using transformations. After multiple substitutions in equation (6),
the outgoing solution to the ODE in terms of Ψ̂, where Ψ̂ = ρψ̂ is one of the substitution
variables, is

ψ̂(σ, ρ) ≈ ρ−1eσρWl(σρ), (7)
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with Wl(σρ) ≈
∑∞
n=1(σρ)

−n being the approximate solution to the normalised form
of the new ODE. The subscript l is the orbital index. Differentiating equation (7) with
respect to ρ and applying the inverse Laplace transform, the equation becomes

1

U

∂Ψ

∂τ
+

1

T

∂Ψ

∂ρ
+

1

T

Ψ

ρ
= ρ−1U(ρ)ψl(τ, ρ) ∗ L−1

(
σρ
W

′

l (σρ;σ)

Wl(σρ;σ)

)
, (8)

where the prime of W is the derivative of W with respect to ρ and the ∗ is Laplace
convolution arising from the inverse Laplace transform. The functions T and U are
both functions of ρ, specifically F−1/2(ρ) and F 1/2(ρ), the radial lapse and temporal
lapse functions respectively. These lapse functions are derived from the function F (ρ)
in (3). The inverse Laplace transform appearing in the right hand side with the Ψ(τ, ρ)
of equation (8) becomes an integral. Evaluating the solution at the boundary ρ = ρB ,
using the substitution Ψ = ρψ, and returning to the tortoise coordinate for the spatial
variable, the exact boundary condition has the following form (Lau, 2004)(

∂Ψ

∂τ
+
∂Ψ

∂ρ∗

) ∣∣∣∣
ρ=ρB

=
1− ρ−1

B

ρB

∫ τ

0

ω2(τ − τ ′; ρB)Ψ2(τ
′; ρB)dτ

′. (9)

The indexing on ω and Ψ refers to the orbital index, l = 2, as defined earlier. The
function ω represents the compressed Zerilli kernel which is obtained from the inverse
Laplace transform in equation (8) and Ψ being the history of the gravitational wave. The
method for evaluating the compressed Zerilli kernel and implementation of the exact
NRBC will be discussed in the following section.

3 Implementation of boundary conditions

The computational domain is defined in ρ∗ and truncated as ρ∗ ∈ [ρL∗ , ρ
R
∗ ]. The left and

right boundaries ρL∗ and ρR∗ are chosen such that ρ(ρL∗ ) ∼ ρe and ρ(ρR∗ ) = 15 where ρe
is the size of the horizon. At both boundaries, the radiation boundary conditions should
be applied.

3.1 Governing equations

We use the direct form of the gravitational radiation equation equation (4) as the second
order partial differential equation (PDE). One can also convert the PDE into a system
of equations. The Sommerfeld condition Ψτ +Ψρ∗ = 0, which is the first order PDE, is
more appropriate when the equation is converted into the first order system of equations
as in Lousto and Price (1997).

3.2 Boundary condition at ρ∗ = ρL∗

We use the following outflow boundary condition at the left domain boundary(
∂Ψ

∂τ
− ∂Ψ

∂ρ∗

) ∣∣∣∣
ρ∗=ρL∗

= 0. (10)
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This boundary condition is not exact because of the potential function V although V
is small. The boundary condition is approximated by the first order finite difference
method such as

Ψ(ρL∗ , τ +∆t) = Ψ(ρL∗ , τ) +
∆t

∆ρ∗

(
Ψ(ρL∗ +∆ρ∗, τ)−Ψ(ρL∗ , τ)

)
,

where ∆t and ∆ρ∗ are the temporal and spatial grid spacing.

3.3 Boundary condition at ρ∗ = ρR∗

For the right boundary we use Lau’s NRBC. For the implementation of the NRBC
in equation (9), we estimate the kernel ω2 using a power series and the compressed
kernel values from Lau (2004) with d = 10. The kernel function ω2 in equation (9) is
approximated by a power series and the compressed kernel values. The series used to
estimate ω2 is

ω2(τ − τ ′) ≈
d∑
k=1

γke
βk(τ−τ ′). (11)

The values of βk and γk are adopted from Table II for the compressed Zerilli kernels in
Lau (2004). Those values in Table II in Lau (2004) were obtained specifically for those
when ρB = 15.

Using the above approximation, the right hand side of equation (9), i.e., the integral
convolution, can be simplified. We take the right hand side of equation (9) to be the
following

A(τ +∆t) =
F (ρB)

ρB

d∑
k=1

∫ τ+∆t

0

γke
βk(τ+∆t−τ ′)Ψ(τ ′)dτ ′, (12)

where F (ρB) = 1− ρ−1
B . We define Ck(τ +∆t) to be the integral on the right hand

side of equation (12) as below

Ck(τ +∆t) =

d∑
k=1

γke
βk(τ+∆t)

∫ τ+∆t

0

e−βkτ
′
Ψ(τ ′)dτ ′. (13)

This integral can be broken into two parts; the first integral being evaluated from 0 to
τ and the second being evaluated from τ to τ +∆t. By definition we have

Ck(τ +∆t) = eβk∆t(Ck(τ) +Bk(τ)), (14)

where Ck(τ) and Bk(τ) are

Ck(τ) = γke
βkτ

∫ τ

0

e−βkτ
′
Ψ(τ ′)dτ ′, (15)

Bk(τ) = γke
βkτ

∫ τ+∆t

τ

e−βkτ
′
Ψ(τ ′)dτ ′. (16)



A remark on the multi-domain hybrid method 111

With the definition of Ck(τ +∆t), A(τ +∆t) rewritten as

A(τ +∆t) =
F (ρB)

ρB

[
d∑
k=1

eβk∆tCk(τ) +
d∑
k=1

eβk∆tBk(τ)

]
. (17)

For the integral of Bk(τ), we use the first order approximation of Ψ such that

Ψ(τ ′) =
Ψ(τ +∆t)−Ψ(τ)

∆t
(τ ′ − τ) + Ψ(τ), (18)

where Ψ(τ +∆t) is unknown at the current time, τ ′ = τ +∆t, and Ψ(τ) is known
from the previous time, τ ′ = τ . Making this substitution into the equation for Bk(τ),
the new form of Bk(τ) becomes

Bk(τ) = γk

([
Ψ(τ +∆t)−Ψ(τ)

∆t

]
Dk +Ψ(τ)Ek

)
, (19)

where Dk and Ek are coefficients defined as

Dk =
1

β2
k

(
1− e−βk∆t[1 + βk]

)
, (20)

Ek =
1

βk
[1− e−βk∆t]. (21)

To find the boundary value of Ψ(ρR∗ ), we use the explicit forward difference method
using the exact NRBC which is given by

Ψ(ρR∗ , τ +∆t)−Ψ(ρR∗ , τ)

∆t
= −Ψ(ρR∗ , τ)−Ψ(ρR∗ −∆ρ∗, τ)

∆ρ∗
+A(τ +∆t), (22)

where Ψ(ρR∗ , τ +∆t) is the unknown value of Ψ, Ψ(ρR∗ , τ) and Ψ(ρR∗ −∆ρ∗, τ) are
the previous values of Ψ, and ∆ρ∗ is the grid spacing at the domain boundary. With
A(τ +∆t), Ψ(ρR∗ , τ +∆t) is then given by

Ψ(ρR∗ , τ +∆t) =
Ψ(ρR∗ , τ)−H(Ψn) + ∆t

F (ρR∗ )
ρR∗

[Jk(τ)]Ψ(ρR∗ , τ)

1− F (ρB)
ρB

∑d
k=1 e

βk∆tγkDk

, (23)

where H(Ψn) and Jk(τ) are defined as

H =
∆t

∆ρ∗
[Ψ(ρR∗ , τ)−Ψ(ρR∗ −∆ρ∗, τ)], (24)

Jk =

[
d∑
k=1

eβk∆t(Ck(τ) + γk

(
Ek −

1

∆t
Dk

)
)

]
. (25)
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4 Multi-domain spectral and finite difference methods

To solve equation (4), we use our previous hybrid method (Chakraborty et al., 2011)
based on the multi-domain spectral and finite difference methods for the spatial
derivatives. For the temporal derivative, we use the second order finite difference
method based on the two step methods. In our previous work, we showed that the hybrid
method is better performing than the finite difference or spectral methods and reduces
the computational cost significantly. The main motivation of using the hyrbid method
in this work is to examine wether we can further enhance the computational efficiency
with the exact NRBC.

The computational domain is partitioned into the multi-domain spectral domains
and the finite difference domain. The finite difference domain serves as the boundary
domain. Each spectral domain uses the Chebyshev spectral method and the size of all
the spectral domains is same. Equation (4) is solved in each subdomain and the solution
is patched across the domain interface. The spectral filtering method is also applied in
each spectral domain if necessary.

4.1 Patching for spectral domains

Consider the two adjacent spectral (SP) domains Ωis and Ωi+1
s whose solutions are

denoted by ϕ and ψ, respectively. The superscripts i and i+ 1 denote the ith and
(i+ 1)th domains, respectively. The subscript s denotes that the domain is the spectral
domain. Hereafter, let ϕ and ψ denote the solution in the left and the right sub-domains,
respectively. Using the three consecutive grids up to the domain interface point, we use
the fourth order approximation to patch the solution at the domain interface as follows

ϕj+1
0 = 2ϕj0 − ϕj−1

0 +∆t2
−ψjNi−2 + λ4ψjNi−1 − 2(λ4 − 1)ϕj0 + λ4ϕj1 − ϕj2

h2oλ
2(λ2 − 1)

,(26)

where the superscripts j + 1, j, and j − 1 indicate the time steps (j + 1)∆t, j∆t,
and (j − 1)∆t and ho = xi+1

1 − xi+1
0 and λ = (xi+1

2 − xi+1
0 )/ho. N i denotes the

polynomial order in the ith subdomain. In this work, we choose N i = N for all i for
the spectral subdomains. The value xk denotes the kth collocation point in each domain.
Each spectral domain has the same domain size. Thus xi+1

2 − xi+1
0 = xiNi − xiNi−2 with

ho = xiNi − xiNi−1.
Figure 1 (Chakraborty et al., 2011) shows the schematic illustration of the adjacent

spectral subdomain interface and patching scheme. The spectral ghost cells are the grid
points in the neighbouring subdomain that are needed for the fourth order interpolation.
Since every subdomain has the same domain size and the polynomial order is same in
every spectral domain, the spectral ghost cells coincide with the collocation points in
the neighbouring subdomain.
For the left domain Ωis, the right boundary value is updated in the same way:

ψj+1
Ni = 2ψjNi − ψj−1

Ni

+ ∆t2
−ψj

Ni−2
+λ4ψj

Ni−1
−2(λ4−1)ψj

Ni+λ
4ϕj

1−ϕ
j
2

h2
oλ

2(λ2−1) .
(27)

Once ψ and ϕ are updated at the domain interface, we use the averaging method to
update the final value of the solution at the interface.
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Figure 1 SP-SP patching at the interface (pointed by arrow)
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4.2 Patching for the spectral and finite difference domains

For the spectral and finite difference (FD) domain patching, we use the polynomial
interpolation for the ghost cells because the ghost cells do not coincide with the
collocation points in the neighbouring subdomain. Here note that we use the uniform
spacing for the finite difference domain. We use the same fourth order interpolation. Let
ψ and ϕ be the solutions in the finite difference domain Ωif and spectral domain Ωi−1

s ,
respectively, where the subscript f denotes the domain by the finite difference method.
Figure 2 (Chakraborty et al., 2011) shows the ghost cells in this case and the patching
method.

Figure 2 SP-FD patching at the interface (pointed by arrow)
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The value of ψ at the left boundary of Ωif is updated using the following:

ψj+1
0 = 2ψj0 − ψj−1

0 + (∆t)
2 −ψj2 + 16ψj1 − 30ψj0 + 16Ψj1 −Ψj2

12h2f
, (28)

where hf = xi1 − xi0 and

Ψjl =
Ni−1∑
k=0

U(xi−1
k )Lk

[
ξ(xi−1

Ni−1 + lhf )
]
, l = 1, 2.

Here Lk(w) is the Lagrange interpolation polynomial based on the Chebyshev
polynomials given by

Lk(w) =
(−1)N

i−1

(1− w2)T ′
Ni−1(w)

c̄kN i−12(w − wk)
,
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where c̄j = 2 if j = 0, N i−1 and c̄j = 1 otherwise (Hesthaven et al., 2009) and
T ′
Ni−1(w) is the first derivative of the Chebyshev polynomial of degree N i−1 with

respect to w. The value of ϕ at the left boundary Ωi−1
s is updated in the similar way,

but using the non-uniform formula equation (26), we have

ϕj+1
Ni−1 = 2ϕjNi−1 − ϕj−1

Ni−1

+(∆t)
2 −Φj1 + λ4Φj0 − 2(λ4 − 1)ϕjNi−1 + λ4ϕjNi−1−1 − ϕjNi−1−2

h20λ
2(λ2 − 1)

,(29)

where h0 and λ are defined in the same way as in equation (26). The interpolation Φjl
are determined by

Φjm =
4∑
k=0

U i(zk)
4∏

l=0,l ̸=k

ym − zl
zk − zl

, m = 0, 1,

where zk = xik and

ym = xi0 + h0λ
m, m = 0, 1.

Once the solution is updated at the domain interface, we also use the average value of
ϕ and ψ to update the final solution value at the domain interface.

4.3 Filtering methods

To reduce the oscillatory behaviour caused by the non-physical reflections at ρL∗ and
ρR∗ , we apply the filtering method for the spectral domain. For the spectral domain we
apply the exponential filter. The exponential filter of order q is used

σ(θ) = e−α|θ|
q

, α > 0, (30)

where (30) is a real, even function. The filtered Chebyshev approximation is given by
Hesthaven et al. (2009)

FN (x) =

N∑
n=0

σ
( n
N

)
anTn(x).

5 Numerical results

We solve equation (4) using the second order two step method for the temporal
derivative and the hybrid method for the spatial derivatives. We use a smooth Gaussian
profile for the initial condition defined below

Ψ(ρ∗, τ = 0) = exp(− 1

10
(ρ∗ − ρo∗)

2),

where ρo∗ = −50. The polynomial order, ps, and the total number of subdomains, Nt,
are chosen such that the Gaussian profile is smooth enough within each subdomain.
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In this work, we choose ps = 16 and various values of Nt including Nt = 1, 000. The
number of grid points in the finite difference domain is automatically determined once
the grid resolution in the spectral domain is determined such that the grid homogeneity
is maintained across the domain interface between the spectral and finite difference
domains. The initial Gaussian profile satisfies the following condition at τ = 0

∂Ψ

∂τ
+
∂Ψ

∂ρ∗
= 0. (31)

The interface of the spectral and finite difference domains is at ρ = 12. The outer
boundary of the finite difference domain is at ρ = ρB = 15.

In this work we consider the following three cases:

• Case I: Equation (31) is used as the boundary condition at ρ = ρB for all τ > 0

• Case II: Lau’s analytic boundary condition is used at ρ = ρB

• Case III: The spectral filtering method is applied within the spectral domain for
Case II.

5.1 Case I

Figure 3 shows the late-time waveform of |Ψ| versus τ collected at ρ = 3.64784 (red)
and the domain boundary ρB = 15 (blue). Here note that ρ = 3.64784 is located inside
the spectral domain. As shown in the figure, the waveform at ρ∗ = ρR∗ is decaying with
τ up to 10−11 until it grows again from τ ∼ 102.45. The waveform at ρ = 3.64784
shows the similar decay pattern but a plateau of ∼ 10−10 lasts until the boundary
effect affects it. As we see in Figure 6, the level of the plateau is corresponding to
the magnitude of |Ψ| at ρ = 15 when computed with the first order outflow boundary
condition with V = 0. For this case, no power-law decay behaviour is obtained even for
an extended time interval.

Figure 3 Case I: Late-time decay of |Ψ| at ρB = 15 (blue) and at ρ = 3.64784 (red) with
the first order outflow boundary condition (see online version for colours)
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Figure 4 Case II: Late-time decay of |Ψ| at ρB = 15 (blue) and at ρ = 3.64784 (red) with
Lau’s NRBC (see online version for colours)
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Note: The green dashed line is the reference line with p = −4.

5.2 Case II

In Case II, we solve equation (4) with Lau’s boundary condition. Figure 4 shows
that the quasi-normal ringing is observed along with the power-law decay at both
locations of ρ = 15 and ρ = 3.64784. The tp fall-off is plotted with the power p = −4.0
as a reference line in green. Using Lau’s exact boundary condition at ρ = ρB = 15,
a power-law decay is obtained, but not of the correct order. The true value of the
power-law decay in the Zerilli case for l = 2, should be p = −7. This result implies
that Lau’s exact boundary condition is indeed superior to the homogeneous Sommerfeld
condition, but is not enough with the given values of ps and Nt. When the potential
term V vanishes, the homogeneous Sommerfeld condition is exact for the second order
wave equations. However, computationally it is not exact. That is, there exists the
non-vanishing reflection mode due to the finite discretisation of space and time although
it is small. Figure 6 shows such an inexactness. To reduce this problem, the discretisation
of space and time seems to be required small enough. But it turns out, in the following,
that increasing the grid resolution does not improve the result. Similar phenomenon
is reported in Khanna (2013). This is because of the errors by such a computational
inexactness. Rewriting the given wave equation into a system or using the higher
precision and high-order method would be a better approach to reduce the inexactness
as suggested in Khanna (2013).

5.3 Case III

Case III uses the spectral filtering method with the identical exact boundary condition as
in Case II. The filtering orders used are q = 16, 12, 10, 8. Figure 5 shows the late-time
profile of the waveform both at ρ = 15 (Blue) and at ρ = 3.64784 (Red). The figure
shows that the power-law decay profile is obtained with the similar order of p ∼ −4.
For q = 8 (bottom right), the decay profile is oscillatory at ρ = 3.64784 but the overall
power-law decay is still p ∼ −4. As shown in the figure the filtering method does not
help to improve the result in terms of the order of the power-law decay.
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Figure 5 Case III: Late-time decay of Ψ at ρ = 15 (Blue) and at ρ = 3.64784 (Red) with
Lau’s NRBC and spectral filtering method (see online version for colours)
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Note: q = 16, 12, 10, 8 from top to bottom and left to right.

We explain the reasons why the proper power-law decay is not obtained with Lau’s
method are as follows. First of all, the computational implementation of the first order
outflow boundary condition is not exact even for V = 0 in the sense that there exists
the reflecting mode at the domain boundary although it is small. As Figure 6 shows the
reflecting mode is significant at the domain boundary unless the temporal and spatial
steps are small enough that the reflecting mode is negligible. Second, the coupling of
the produced non-physical reflections with the potential term hinders us from obtaining
the proper power-law decay. To remedy this problem, the value of ρB must be increased
or the temporal and spatial resolution should be decreased significantly.

To see such numerical effect, we solve equation (4) with the vanishing potential
function V . When V = 0, equation (4) is a simple wave equation in 1 + 1 space-time
and the Sommerfeld condition at ρ = ρB is theorectically exact. Figure 6 shows the
late-time decay behaviour of Ψ for the vanishing potential with the outflow boundary
condition Ψτ +Ψρ∗ = 0 collected at ρ = ρB (top figure) and the profile of |Ψ| versus
ρ∗ at τ = 102.3345 (bottom figure). To avoid possible non-physical reflections from the
left boundary at ρ∗ = ρL∗ , we use ρL∗ = −1, 000. As shown in the figure, the Gaussian
profile exits the domain and Ψ decays as it propagates toward the boundary. However,
the outflow boundary condition is exact only up to 10−10 at ρ = 15 for ps = 16 and
Nt = 1, 000 and the reflected wave propagates to left from the right boundary (bottom
figure). The magnitude of the reflected wave is significantly large, ∼ 10−4, compared to
the magnitude of Ψ, |Ψ| ∼ 10−10, at ρ = ρB , which results in disturbing the waveform
collected inside the domain when coupled with the potential term.
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Figure 6 Ψ with V = 0. The first order PDE, Ψτ +Ψρ∗ = 0, is used as the boundary
condition (see online version for colours)

1.8 2 2.2

−10

−5

0

log
10

 τ

lo
g 10

 |Ψ
| 

−1000 −800 −600 −400 −200 0 200
−6

−4

−2

0

2

4

6
x 10

−4

ρ
*

Ψ
(ρ

)

Notes: Top: Late-time decay of Ψ at ρ = ρB . Bottom: Ψ versus ρ∗ at τ = 102.3345.

In order to reduce the errors due to the inexactness in Figure 6, we examine various grid
resolutions and the size of the domain boundary. Figures 7 and 8 show more results with
Lau’s NRBC. The solid line in purple color is the reference line with the power p =
−4. Figure 7 shows the power-law decay with different ρB ≥ 15, ρB = 15, 16, 18, 19
(from left to right, top to bottom). Figure 8 shows the power-law decay with higher
grid resolutions Nt = 1, 000, 1, 200, 1, 500, 1, 800 (from left to right, top to bottom).
The grid resolution in the finite difference domain changes according to the requirement
of the grid homogeneity between the spectral and finite difference domains. As shown
in these figures, the similar power-law decay patterns are observed for every case. As
these figures indicate, the grid resolution does not improve the result when the domain
boundary is still small ρB ∼ 19. The inexactness errors are still significant as long as
the first order radiation boundary condition is incorporated in the second order wave
equation if the domain boundary is small enough.
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Figure 7 Late-time decay of |Ψ| with ρB = 15, 16, 18, 19 (from left to right and top to
bottom) (see online version for colours)
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Figure 8 Late-time decay of Ψ with different resolutions, Nt = 1, 000, 1, 200, 1, 500, 1, 800
(from left to right and top to bottom) (see online version for colours)
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6 Conclusions

In this note, we solve the Zerilli equation on the Schwarzschild background. The
second order wave equation is solved using the spectral and finite difference hybrid
method. The computational domain is split into the finite difference domain and the
spectral domain. The spectral domain is split into multiple subdomains, each of which
solves the wave equation with the Chebyshev spectral method. For the right boundary,
we use Lau’s analytic boundary condition developed by Lau (2004) based on the
Laplace transformation. In this note, we present several numerical experiments with
Lau’s method. Our numerical results show that the power-law decay at a slower rate is
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obtained with Lau’s exact boundary condition with the small value of the right boundary
location. But the expected power-law of the order p = −7 is not obtained. The obtained
order is about p ∼ −4. Our numerical results show that the filtering method does not
help to improve the result. The exact boundary condition is given by the first order wave
equation with the source term. Due to the finite resolution with the finite precision, there
exists a non-physical reflecting mode at the domain boundary. The inexactness errors
still significant as long as the first order radiation boundary condition is incorporated
in the second order wave equation when the domain boundary is small. Thus the main
observation in this paper is that our hybrid method yields the proper power-law decay
even with the first order homogeneous Sommerfeld boundary condition with a relatively
small value of ρB , but if ρB is extremely small, e.g., ρB ∼ 19, the inexactness error
becomes dominant with the coupling of the non-zero potential term and higher resolution
does not improve the performance. In Khanna (2013), it is shown that in such a case
high order implementation or high precision computation can remedy the problem. Thus
we propose to use the hybrid method with more consistent formulation, such as the
system of the first order wave equation with the first order NRBC or to use a high
precision computation. Both approaches will enhance the computational efficiency by
hybridising the spectral and finite difference methods.
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