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abcd Boussinesq System

abcd Boussinesq Equations and
the Coupled BBM-System



Intro BBM Equations Previous Work LDG for BBM

abcd Boussinesq System

Overview of the Work

Derivation and implementation of a Discontinuous Galerkin
(DG) method to solve a system of coupled nonlinear
hyperbolic partial differential equations.
Specifically we look at the couple BBM-system, which is a
special case of the abcd-Boussinesq system.
Develop numerical fluxes that conserve energy and work well
for long time simulations.
Prove stability results and error estimates for the proposed
method.
Numerically test the method using convergence tests, solitary
wave generation and solitary wave collisions.
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abcd Boussinesq System

Applications of the abcd Boussinesq System

The Boussinesq system of equations are used to model
propagation of long-crested waves on large lakes or on the
ocean.
The equations can also model water waves moving through a
channel which have small amplitude and long wavelengths.
Models in coastal engineering utilize Boussinesq-type
equations to simulate water waves in shallow waters and
harbors.
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abcd Boussinesq System

abcd Boussinesq System Derivation

Steps (J. Bona, M. Chen, J. Saut (2002)):
Asymptotic expansion of the Euler equations
Assumptions: small amplitude waves with long wavelength
Let h be approximate constant depth of a channel, A be the
wave amplitude, and λ be wavelength
α = A

h � 1, and β = h2

λ2 � 1
abcd Boussinesq system

ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx − duxxt = 0,

where u(x, t) is the horizontal velocity of the fluid at the

scaled height
√

2
3h below the undisturbed surface.
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abcd Boussinesq System

abcd Boussinesq System Parameters

The parameters for the abcd Boussinesq system have the following
relationships:

a+ b = 1
2

(
θ2 − 1

3

)
, c+ d = 1

2(1− θ2) ≥ 0,

a+ b+ c+ d = 1
3 ,

where θ ∈ [0, 1] specifies the scaled height for horizontal velocity
variable, u(x, t).
With θ2 = 2

3 (b = d = 1
6 ), and a = c = 0, we obtain the coupled

BBM system

ηt + ux + (ηu)x −
1
6ηxxt = 0,

ut + ηx + uux −
1
6uxxt = 0.
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abcd Boussinesq System

Coupled-BBM System and Single BBM equation

Benjamin, Bona, and Mahony (hence BBM) published the
results for the BBM equation in 1972.
Single BBM equation

vt + vx + vvx −
1
6vxxt = 0

Equations as an improvement of the KdV equation for
modeling long surface gravity waves of small amplitude.

vt + 6vvx + vxxx = 0 (KdV)

BBM equations are stable at high wave numbers, whereas the
KdV equation is unstable for high wave numbers.
Single BBM equation is a simplification of the coupled
BBM-system, in that the single BBM equation assumes
unidirectional wave motion.
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abcd Boussinesq System

Coupled-BBM System Conserved Quantities

The following quantities are conserved by the coupled-BBM
system:∫

R
η dx, and

∫
R
u dx∫

R
(ηu+ ηxux) dx

1
2

∫
R

[
η2 + (1 + η)u2

]
dx

In numerical tests, the last quantity, denoted as

H(η, u, t) = 1
2

∫
R

[
η2 + (1 + η)u2

]
dx

will be the Hamiltonian functional we will conserve numerically.
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Previous Work on the Coupled
BBM System
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Bona, Chen (1998)

J.Bona, M.Chen (1998)

Existence, uniqueness, and regularity of the solution to the
coupled BBM system is given.
Numerical method using a finite difference scheme, and
predictor-corrector methods.
The scheme is fourth-order accurate in both space and time.
The scheme is unconditionally stable.
Numerical tests for generation of solitary waves, head-on
collision of solitary waves.
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A. Alazman, J. Albert, J. Bona, M. Chen, J. Wu (2006)

A. Alazman, J. Albert, J. Bona, M. Chen, J. Wu (2006)

Comparison between the coupled BBM-system and single
BBM-equation.
Approximate traveling wave solutions are generated from
exact solution to single BBM equation.
The numerical method for the BBM-system used is that in J.
Bona, M. Chen (1998).
Numerical tests for generation of solitary waves, dispersive
waves, solitary wave interactions.
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V. Dougalis, D. Mitsotakis, J. Saut (2009)

V. Dougalis, D. Mitsotakis, J. Saut (2009), (2010)

Studies the multi-dimensional version of the BBM-system
A standard finite element Galerkin method for 2D case, with
continuous piecewise linear elements on a triangular mesh. A
second order RK scheme is used in time.
Method achieves optimal convergence.
Numerical tests for solitary waves passing an obstacle (pier),
without obstacle (shoreline), and with an elliptic “island” for a
earthquake-generated tsunami wave.
(2010) is an extension of (2009) with a modified Galerkin
method, more applications.
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LDG Method for the
BBM-System



Intro BBM Equations Previous Work LDG for BBM

LDG Formulation

Coupled BBM-system in Conservation Form

The coupled BBM-system given by{
ηt + ux + (ηu)x − 1

6ηxxt = 0,
ut + ηx + uux − 1

6uxxt = 0.

We can write the above system in a conservation form
(
η − 1

6ηxx
)
t
+ (u+ (ηu))x = 0,(

u− 1
6uxx

)
t
+
(
η + u2

2

)
x

= 0.
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LDG Formulation

Coupled BBM-system in Conservation Form

The coupled BBM-system given by{
ηt + ux + (ηu)x − 1

6ηxxt = 0,
ut + ηx + uux − 1

6uxxt = 0.

We can write the above system in a conservation form
(
η − 1

6ηxx
)
t
+ (u+ (ηu))x = 0,(

u− 1
6uxx

)
t
+
(
η + u2

2

)
x

= 0.
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LDG Formulation

Coupled BBM-system as a system of first order equations

We can rewrite the coupled-BBM system into a system of first
order equations as the following

wt + (η + q)x = 0

w = u− 1
6rx

r = ux

q = 1
2u

2

vt + (u+ p)x = 0

v = η − 1
6sx

s = ηx

p = ηu
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LDG Formulation

DG Formulation
The DG method is formulated as follows: for any test functions
φh, ψh, ϕh, ζh, ρh, θh, ξh, ϑh ∈ V k

h , find
wh, vh, uh, ηh, rh, sh, ph, qh ∈ V k

h such that∫
(wh)tφh dx−

∫
(ηh + qh) (φh)x dx−

N∑
j=1

((η̃h + q̂h)[φh])j+ 1
2

= 0

∫
whψh dx−

∫
uh(ψh)x dx−

1
6

∫
rh(ψh)x dx−

1
6

N∑
j=1

(r̂h[ψh])j+ 1
2

= 0

∫
rhϕh dx+

∫
uh(ϕh)x dx+

N∑
j=1

(ûh[ϕh])j+ 1
2

= 0

∫
qhζh dx−

∫ (1
2(uh)2

)
ζh dx = 0
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LDG Formulation

DG Formulation (cont.)

∫
(vh)tρh dx−

∫
(uh + ph) (ρh)x dx−

N∑
j=1

((ũh + p̂h)[ρh])j+ 1
2

= 0

∫
vhθh dx−

∫
ηhθh dx−

1
6

∫
sh(θh)x dx−

1
6

N∑
j=1

(ŝh[θh])j+ 1
2

= 0

∫
shξh dx+

∫
ηh(ξh)x dx+

N∑
j=1

(η̂h[ξh])j+ 1
2

= 0
∫
phϑh dx−

∫
(ηhuh)ϑh dx = 0
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LDG Formulation

Choice of Numerical Flux
We investigate two different choices of numerical flux, depending
on what properties we wish to preserve. First is the alternating flux

{
ûh = u+

h ,

η̂h = η−
h .


ũh + p̂h = u+

h + p+
h ,

η̃h + q̂h = η−
h + q−

h ,

r̂h = r−
h ,

ŝh = s+
h .

Choice of flux follows from trying to recover the Hamiltonian
functional.
Choosing uh, ηh, and ph, qh, and rh, sh from opposite sides,
the summation terms, and some of the integrals cancel out
from integration by parts.
Remaining terms give the Hamiltonian functional which is
conserved by the method.
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LDG Formulation

Stability Theorem

Theorem (Stability, (Xing, B.))
For the choice of alternating flux, the Hamiltonian functional,
Hh(ηh, uh, t), is conserved by the LDG method, i.e.

d

dt
Hh(ηh, uh, t) = d

dt

∫
I
(η2
h + (1 + ηh)u2

h) dx = 0

for all time.

Idea of the proof: The proof has a similar flavor to the energy
conservation theorem found in M. Chen, Y. Liu (2012) at the PDE
level. Choosing the alternating flux from the previous slides,
boundary terms can be eliminated by integration by parts
identities, to yield the Hamiltonian functional.
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LDG Formulation

Choice of Numerical Flux

Second, is the upwind flux which introduces numerical dissipation,
and has the choices of{

ũh = {uh} − 1
2 [ηh],

η̃h = {ηh} − 1
2 [uh].(̃uh)t = {(uh)t}+ 1

2 [(ηh)t],
(̃ηh)t = {(ηh)t}+ 1

2 [(uh)t].

{
q̂h = {qh} − 1

2 [ph],
p̂h = {ph} − 1

2 [qh].(̃rh)t = {(rh)t} − 1
2 [(sh)t],

(̃sh)t = {(sh)t} − 1
2 [(rh)t].

Notation: {uh} = u+
h

+u−
h

2 and [uh] = u+
h − u

−
h

Choice of flux follows from eliminating the third derivative
term to get a system of hyperbolic conservation laws
Upwind flux is the standard choice for this type of system
Chosen to add numerical dissipation to the system
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LDG Formulation

Energy Dissipation Theorem

Theorem (Energy Dissipation, (Xing, B.))
For the choice of upwind flux, the Hamiltonian functional,
Hh(ηh, uh, t), satisfies

d

dt
Hh(ηh, uh, t) = d

dt

∫
I
(η2
h + (1 + ηh)u2

h) dx ≤ 0

with the LDG method.

Idea of the proof: Choosing the upwind flux choices from previous
slides, not all boundary terms from the DG method are eliminated.
These terms can be bounded by application of Young’s inequality
to get the energy decreasing property.
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LDG Formulation

Advantages/Disadvantages for Numerical Fluxes

Comparison of Alternating vs. Upwind
Alternating Flux

Method is stable
Conserves energy exactly
Good for long time simulations

Upwind Flux
Method is stable
Dissipates energy over time
Not accurate for long time simulations
Better choice when shocks/discontinuities are present
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LDG Formulation

Time Discretizations

We have used two different types of time discretizations over the
course of the project:

Strong Stability Preserving (SSP) Runge-Kutta (RK) Methods
1 SSPRK4 explict time stepping method
2 High order SSP methods maintain the total variation

diminishing (TVD) property
3 SSP methods are used to control numerical oscillations that

occur around discontinuities
Midpoint Rule Method

1 Implicit time stepping method
2 Conserves the discrete energy equivalent to the continuous

case, over longer time than SSPRK4
3 Computationally expensive as this is an implicit method
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LDG Formulation

Remaining Work

The error estimate proof of the LDG method for the single
BBM equation case is partially completed.
The proof would establish the sub-optimal error estimate

||u− uh|| ≤ Chk+ 1
2

where u is the true solution, uh is the LDG approximation,
and k is the degree of the piecewise polynomial space.
We would to prove a similar estimate for the coupled
BBM-system. Difficulty arises in this proof due to the
nonlinear terms present and the coupled nature of the system.
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Numerical Results

Solutions to the BBM-system (Exact Traveling Wave
Solution)

From J. Bona, M. Chen (1998), the exact traveling wave
solution to the BBM-system is

u(x, t) = 3k sech2
( 3√

10
(x− kt− x0)

)
,

η(x, t) =
15
4

(
−2 + cosh

(
3
√

2
5(x− kt− x0)

))
sech4

( 3√
10

(x− kt− x0)
)
,

where k = ±5
2 , and x0 is the x value where the center of the

wave is located
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Numerical Results

Solutions to the BBM-system (Approximate Solitary Wave
Solution)

From A. Alazman, et. all (2006), the coupled BBM-system
has solitary wave solutions similar to the single BBM equation
given by

vt + vx + 3
2εvvx −

1
6εvxxt = 0,

where ε represents the ratio of the maximum wave amplitude
to the undisturbed depth of the liquid.
The exact traveling wave solution to the single BBM equation
is

v(x, t) = sech2
(

1
2

√
3
κ

(x− κt− x0)
)
,

where κ = 1 + ε/2.
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Numerical Results

Solutions to the BBM-system (Approximate Solitary Wave
Solution)

An approximate solitary wave can be constructed using the
following initial condition with the coupled BBM-system

η(x, 0) = v(x, 0),

u(x, 0) = v(x, 0)− 1
4εv(x, 0)2,

where v(x, t) is the exact traveling solution to the single
BBM-equation
Compare the single BBM solution to the coupled-BBM system
with given initial data
Approximate solitary wave for the coupled-BBM system,
η(x, t), is accurate to O

(1
ε

)
in time
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Numerical Results

Convergence Test: Alternating Flux, SSPRK4 in Time
(Exact Traveling Wave Solution)

Parameters: k = 2, L = 40,∆x = 1
2j for j = 0, . . . , 4, ∆t = .1∆x, T = 1

Nx j ‖eη‖L1 Order ‖eu‖L1 Order
40 0 1.6003e-00 9.3584e-01
80 1 1.5717e-01 3.34 6.9160e-02 3.75

160 2 1.5362e-02 3.35 5.0564e-03 3.77
320 3 1.7227e-03 3.15 5.2204e-04 3.27
640 4 2.0514e-04 3.06 6.4118e-05 3.02
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Numerical Results

Convergence Test: Alternating Flux, and Midpoint Rule in
Time (Exact Traveling Wave Solution)

Parameters: k = 2, L = 40,∆x = 1
2j for j = 0, . . . , 4, ∆t = .1∆x2,

T = 1, tolerance = 10−10

Nx j ‖eη‖L1 Order ‖eu‖L1 Order
40 0 2.1994e-00 1.5848e-00
80 1 1.7709e-01 3.63 1.1434e-01 3.79

160 2 1.5581e-02 3.50 7.0977e-03 4.00
320 3 1.6858e-03 3.20 6.0759e-04 3.54
640 4 1.9711e-04 3.09 6.7434e-05 3.17
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Numerical Results

Convergence Test: Upwind Flux, and SSPRK4 in Time
(Approximate Solitary Wave Solution)

Parameters: k = 2, L = 40,∆x = 1
2j for j = 0, . . . , 4, ∆t = .1∆x, T = 1

Nx j ‖eη‖L1 Order ‖eu‖L1 Order
40 0 1.6629e-00 1.0943e-00
80 1 1.1121e-01 3.90 1.1281e-01 3.28

160 2 8.0167e-03 3.79 1.2562e-02 3.17
320 3 7.3197e-04 3.45 1.5346e-03 3.03
640 4 7.8245e-05 3.23 1.9317e-04 2.99
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Numerical Results

Long Time Test Approximation - Alternating Flux,
SSPRK4 (Exact Traveling Wave Solution)
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Figure : For the long time test, we run the code up to T = 60, and track
L1 errors over time.
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Numerical Results

Long Time Test L1 Error - Alternating Flux, SSPRK4
(Exact Traveling Wave Solution)
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Figure : L1 errors plotted against time.
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Numerical Results

Long Time Test Approximation - Alternating Flux,
Midpoint in Time (Exact Traveling Wave Solution)
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Figure : For the long time test, we run the code up to T = 60, and track
L1 errors over time.
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Numerical Results

Long Time Test L1 Error - Alternating Flux, Midpoint in
Time (Exact Traveling Wave Solution)
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Figure : L1 errors plotted against time.
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Numerical Results

Conserved Quantity - Alternating-SSPRK4-Midpoint
Comparison (Exact Traveling Wave Solution)
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Figure : Comparison of Energy Values of SSPRK4 and Midpoint, with
Alternating Flux.



Intro BBM Equations Previous Work LDG for BBM

Numerical Results

Solitary Wave Generation Test

For the solitary wave generation test, we start with a first order
approximation to the traveling wave solution that was used in the
mesh refinement, and long time tests. The initial condition is given
by

η(x, 0) = η0 sech2
(

1
2

√
3η0
k

(x− x0)
)
,

u(x, 0) = η(x, 0)− 1
4η(x, 0)2,

where η0 = 0.8 is the peak height for η(x, 0), and x0 = 20.

The wave is evolved over the long domain, then “filtered”, and
reset back to the left hand side of the domain. The process is
repeated until dispersive tails are “small.”
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Numerical Results

Solitary Wave Generation Test Initial Condition
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Figure : Solitary wave initial condition profile.
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Numerical Results

Solitary Wave Generation Test - One Evolution (T = 42)
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Figure : Solitary wave propagation at T = 42.
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Numerical Results

Solitary Wave Collision Test

Solitary Wave Collision Test

(Loading movie...)


wave_collision.avi
Media File (video/avi)
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Numerical Results

Concluding Remarks

Local Discontinuous Galerkin (LDG) method to solve the
single BBM equation and BBM-system.
Alternating and upwind flux choices that conserve energy and
work well for long time simulations.
Stability results and error estimates for the proposed method.
Numerical experiments validating the usefulness of the
method.
Error estimate proofs for the single BBM and coupled
BBM-system are still in progress.
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Numerical Results
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