1. Symmetry
By Bryan Carrillo, University of California, Riverside

Examples based on Section 2.4 of College Algebra by Beecher

Certain functions’ graphs have symmetry properties. First, we give examples of graphs of these functions

Definition: Symmetric with respect to x-axis

These functions satisfy the property that if we fold the graph on the x-axis, the parts above and below the x-axis will coincide.

Example 1.1: x-axis

The function $x = y^2$.

![Graph of $x = y^2$]

Definition: Symmetric with respect to y-axis

These functions satisfy the property that if we fold the graph on the y-axis, the parts to the left and right of the y-axis will coincide.
Example 1.2: x-axis

The function $y^2 = x$.

![Graph of $y^2 = x$](image1)

Definition: Symmetric with respect to Origin

These functions satisfy the property that if we rotate the graph 180° about the origin, the resulting figure coincides with the original.

Example 1.3: x-axis

The function $x^2 = y^2 + 2$.

![Graph of $x^2 = y^2 + 2$](image2)

We can test symmetry without looking at the graph of these functions:
Definition: Checking Symmetry Without a graph

Given a function $y = f(x)$

1. **Symmetric with respect to the x-axis:** Replace y by $-y$ and check if we still obtain the original function $f(x)$.

2. **Symmetric with respect to the y-axis:** Replace x by $-x$ and check if we still obtain the original function $f(x)$.

3. **Symmetric with respect to the origin:** Replace x by $-x$ and y by $-y$ and check if we still obtain the original function $f(x)$.

Example 1.4

Determine the symmetry of $3x = |y|$.

Proof. We check symmetric with respect to the x-axis. Replace y by $-y$:

\[
3x = |-y| \quad 3x = |y|.
\]

Notice we obtain our original function again! So this is symmetric with respect to the x-axis.

Now we check symmetric with respect to the y-axis. Replace x by $-x$:

\[
3(-x) = |y| \quad -3x = |y|.
\]

Notice this is not the same function as $3x = |y|$ so we do not have symmetry with respect to the y-axis.

Finally we check symmetry with respect to the origin. Replace x by $-x$ and y by $-y$:

\[
3(-x) = |-y| \quad -3x = |y|.
\]

We do not get the same function as before so it is not symmetric with respect to the origin.

These symmetries are related to even and odd functions.

Definition: Even and Odd Functions

Given a function $y = f(x)$,

1. **Even function or symmetric with respect to y-axis:** Replace x by $-x$ and check if $f(x) = f(-x)$

2. **Odd function or symmetric respect to x-axis:** Replace x by $-x$ and check if $f(-x) = -f(x)$. A function cannot be both even and odd, unless it is the zero function.

Example 1.5

Determine the symmetry of if $f(x) = \sqrt{x^2 + 1}$, $g(x) = x + \frac{1}{x}$ and $h(x) = 7x^3 + 4x - 2$ are even, odd, or neither.

Proof. To check even, odd, or neither, all we need to do is calculate $f(-x)$, $g(-x)$ and $h(-x)$:

\[
f(-x) = \sqrt{(-x)^2 + 1} = \sqrt{x^2 + 1},
\]

\[
g(-x) = (-x) + \frac{1}{-x} = -x - \frac{1}{x},
\]

\[
h(-x) = 7(-x)^3 + 4(-x) - 2 = -7x^3 - 4x - 2.
\]

Since $f(-x) = f(x)$, f is even.

We first see that $g(-x) \neq g(x)$, but we can factor out a negative from both terms to obtain $g(-x) = -x - \frac{1}{x} = -(x + \frac{1}{x}) = -g(x)$. Hence g is odd.

However, $h(-x) \neq h(x)$ so h is not even. If we factor a negative out from every term, we have $h(-x) = -7x^3 - 4x - 2 = -(7x^3 + 4x - 2)$ which does not equal $-h(x) = -(7x^3 + 4x - 2)$. So h is neither even nor odd.