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Supersymmetry and Division Algebras

Introduction

I The only normed division algebras are R, C, H, and O.
They have dimensions 1, 2, 4, and 8.

I The only Yang–Mills theories with minimal supersymmetry
occur in dimensions 3, 4, 6, and 10.

I The classical superstring also makes sense only in
dimensions 3, 4, 6, and 10.

These are all related. We shall focus on the way division
algebras give rise to supersymmetry.
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Introduction

This work has its basis in that of others:

I In 1983, Kugo and Townsend showed that supersymmetric
theories were related to the division algebras.

I In 1988, Evans discovered that the existence of a
super-Yang–Mills theory in dimension n + 2 is equivalent to
the existence of a normed division algebra in dimension n.

I In 1994, Schray developed an octonionic model for the
superparticle.

I More broadly, Dray, Manogue, and Schray have developed
an octonionic formulation of spinors in 9 + 1-dimensional
spacetime.
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Supersymmetry and the Trilinear Term

I Very loosely, supersymmetry is a symmetry between
bosons (vectors) and fermions (spinors).

I Both super-Yang–Mills theories and classical superstring
theories depend on a certain identity between vectors and
spinors.
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Supersymmetry and the Trilinear Term

Building Blocks
I Let V be the vectors in D-dimensional spacetime, and

Cliff(V ) the associated Clifford algebra.
I The double cover of the Lorentz group, Spin(D − 1,1), is

the subgroup generated by pairs of unit vectors in Cliff(V ).
I V forms the vector representation of Spin(D − 1,1).

I In Yang–Mills theory, V is used to represent bosons,
which are roughly the particles transmitting forces.
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Supersymmetry and the Trilinear Term

Building Blocks
I Let S± be spinor representations of Spin(D − 1,1), that

is representations arising from a module of Cliff(V ).
I Vectors can act on spinors via an intertwiner:

V ⊗ S± → S∓
(A, ψ) 7→ Aψ

I Pairs of spinors can be turned into vectors via an
intertwiner:

S± ⊗ S± → V
(ψ, φ) 7→ ψ · φ

I In Yang–Mills theory, S± is used to represent fermions,
which are roughly the particles of matter.
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Supersymmetry and the Trilinear Term

For super-Yang–Mills theories and classical superstring
theories, we need the following to hold:

Theorem: In dimensions 3, 4, 6 and 10, let ψ, φ, and χ be
spinors in S+. Then the trilinear term

tri(ψ, φ, χ) = (ψ · φ)χ+ (φ · χ)ψ + (χ · ψ)φ

vanishes identically.

We prove this as a consequence of alternativity.
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Normed Division Algebras

Let K be a normed division algebra of dimension n. Then
I K has a conjugation, a linear operator ∗ satisfying

x∗∗ = x , (xy)∗ = y∗x∗.

I This allows us to define real and imaginary parts in the
same way as for the complex numbers:

Re(x) =
x + x∗

2
, Im(x) =

x − x∗

2

I K is alternative, meaning the subalgebra generated by
any two elements is associative.

I In particular, the associator

[x , y , z] = (xy)z − x(yz)

is totally antisymmetric.
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Normed Division Algebras

Using these facts, we can calculate that
I The associator is purely imaginary.
I For x , y , z ∈ K, the real part Re(xyz) is well-defined and

cyclically symmetric.
I For matrices X ,Y ,Z with entries in K, the real trace

Re tr(XYZ ) is well-defined and cyclically symmetric.
This last tool is crucial in what follows.
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Vectors, Spinors and Intertwiners

Vectors

The normed division algebra K of dimension n gives the vectors
and spinors in n + 2-dimensional spacetime special properties.

I The vectors correspond to 2 × 2 hermitian matrices:

V =

{(
t + x y

y∗ t − x

)
: t , x ∈ R, y ∈ K

}
I The usual formula for the determinant of a matrix gives the

Minkowski norm on this n + 2-dimensional vector space:

−det
(

t + x y
y∗ t − x

)
= −[(t+x)(t−x)−yy∗] = −t2+x2+|y |2

I The Lorentz group Spin(n + 1,1) thus acts on V via
determinant-preserving linear transformations.
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Vectors, Spinors and Intertwiners

Spinors

I The spinors S+ and S− both have underlying vector space
K2.

I The vectors act on spinors using their representation as
2 × 2 matrices.

More precisely,
I A ∈ V acts on ψ ∈ S+ via left multiplication, and gives an

element S−:
Γ: V ⊗ S+ → S−
Γ: (A, ψ) 7→ Aψ

I A ∈ V acts on ψ ∈ S− via left multplication by its trace
reversal

Ã = A − trA

and gives an element of S+:

Γ̃ : V ⊗ S− → S+

Γ̃ : (A, ψ) 7→ Ãψ
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Vectors, Spinors and Intertwiners

Spinors

I We can combine Γ and Γ̃ to have vectors act on S+ ⊕ S−.

γ : V → End(S+ ⊕ S−)

γ : A 7→
(

0 Ã
A 0

)
I This satisfies the Clifford algebra relation, so it induces an

action of the Clifford algebra Cliff(V ) on S+ ⊕ S−.
I Spin(n + 1,1) is the subgroup of Cliff(V ) generated by

products of pairs of unit vectors.
I S+ and S− are representations of Spin(n + 1,1).
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Vectors, Spinors and Intertwiners

Intertwiners

We can define a pairing on spinors of opposite chirality:

S± ⊗ S∓ → R

by
〈ψ, φ〉 = Re(ψ†φ)

Prop: The pairing 〈·, ·〉 is invariant under Spin(n + 1,1)
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Vectors, Spinors and Intertwiners

Intertwiners

I We use 〈·, ·〉 to turn pairs of spinors into 1-forms.
I Define

S+ ⊗ S+ → V ∗

by
ψ · φ(A) = 〈ψ,Aφ〉.

I When we identify vectors and 1-forms, we can use the
cyclic property of the real trace, plus the Clifford relation, to
compute:

ψ · φ = ˜ψφ† + φψ†

Prop: This map is a Spin(n + 1,1) intertwiner.
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The Trilinear Term Revisited

I ψ · φ = ˜ψφ† + φψ† is the key formula!

Recall, we are trying to prove:

Theorem: In dimensions 3, 4, 6 and 10, let ψ, φ, and χ be
spinors in S+. Then

tri(ψ, φ, χ) = (ψ · φ)χ+ (φ · χ)ψ + (χ · ψ)φ

vanishes identically.
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The Trilinear Term Revisited

tri(ψ, φ, χ) is totally symmetric in ψ, φ, and χ. So it suffices to
prove:

Theorem: In dimensions 3, 4, 6 and 10, let ψ be a spinor in S+.
Then

(ψ · ψ)ψ = 0.

Proof: Indeed, let ψ ∈ S+ = K2. Then

(ψ · ψ)ψ = 2(̃ψψ†)ψ = 2[(ψψ†)ψ − ψ(ψ†ψ)] = 0

since K is alternative and ψ involves only two elements of K.
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