Introducing The Quaternions

John Huerta

Department of Mathematics
UC Riverside
Fullerton College

- The complex numbers \mathbb{C} form a plane.
- Their operations are very related to two-dimensional geometry.
- In particular, multiplication by a unit complex number:

$$
|z|^{2}=1
$$

which can all be written:

$$
z=e^{i \theta}
$$

gives a rotation:

$$
R_{z}(w)=z w
$$

by angle θ.

How does this work?

- $\mathbb{C}=\left\{a+b i: a, b \in \mathbb{R}, \quad i^{2}=-1\right\}$
- Any complex number has a length, given by the Pythagorean formula:

$$
|a+b i|=\sqrt{a^{2}+b^{2}}
$$

- We can add and subtract in \mathbb{C}. For example:

$$
a+b i+c+d i=(a+c)+(b+d) i
$$

- We can also multiply, which is much messier:

$$
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

What does this last formula mean?

Fortunately, there is a better way to multiply complex numbers, thanks to Leonhard Euler:

Figure: Handman's portrait of Euler. Wikimedia Commons.
who proved:

$$
e^{i \varphi}=\cos \varphi+i \sin \varphi
$$

Geometrically, this formula says $e^{i \varphi}$ lies on the unit circle in \mathbb{C} :

Figure: Euler's formula. Wikimedia Commons.

- $e^{i \varphi}$ has unit length.
- If we multiply by a positive number, r, we get a complex number of length r :

$$
r e^{i \varphi}
$$

- By adjusting the length r and angle φ, we can write any complex number in this way!
- In a calculus class, this trick goes by the name polar coordinates.

And this gives a great way to multiply complex numbers:

- Remember our formula was:

$$
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

- Instead, we can write each factor in polar coordinates:

$$
a+b i=r e^{i \varphi}, \quad c+d i=s e^{i \theta}
$$

- And now:

$$
(a+b i)(c+d i)=r e^{i \varphi} s e^{i \theta}=r s e^{i(\varphi+\theta)}
$$

- In words: to multiply two complex numbers, multiply their lengths and add their angles!

In particular, if we multiply a given complex number z by

$$
e^{i \varphi}
$$

which has unit length 1, the result:

$$
e^{i \varphi} z
$$

has the same length as z.
It is rotated by φ degrees.

So, we can use complex arithmetic (multiplication) to do a geometric operation (rotation).

The 19th century Irish mathematician and physicist William Rowan Hamilton was fascinated by the role of \mathbb{C} in two-dimensional geometry.

For years, he tried to invent an algebra of "triplets" to play the same role in three dimenions:

$$
a+b i+c j \in \mathbb{R}^{3}
$$

Alas, we now know this quest was in vain.

Theorem

The only normed division algebras, which are number systems where we can add, subtract, multiply and divide, and which have a norm satisfying

$$
|z w|=|z \| w|
$$

have dimension 1, 2, 4, or 8.

Hamilton's search continued into October, 1843:
Every morning in the early part of the above-cited month, on my coming down to breakfast, your (then) little brother William Edwin, and yourself, used to ask me: "Well, Papa, can you multiply triplets?" Whereto I was always obliged to reply, with a sad shake of the head: "No, I can only add and subtract them."

On October 16th, 1843, while walking with his wife to a meeting of the Royal Society of Dublin, Hamilton discovered a 4-dimensional division algebra called the quaternions:

That is to say, I then and there felt the galvanic circuit of thought close; and the sparks which fell from it were the fundamental equations between i, j, k; exactly such as I have used them ever since:

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

Hamilton carved these equations onto Brougham Bridge. A plaque commemorates this vandalism today:

Figure: Brougham Bridge plaque. Photo by Tevian Dray.

The quaternions are

$$
\mathbb{H}=\{a+b i+c j+d k: a, b, c, d \in \mathbb{R}\}
$$

- i, j and k are all square roots of -1 .
- $i j=k=-j i, \quad j k=i=-k j, \quad k i=j=-i k$.
- As we shall see, we can use quaternions to do rotations in 3d.

Puzzle
Check that these relations ($i j=k=-j i$, etc) all follow from Hamilton's definition:

$$
i^{2}=j^{2}=k^{2}=i j k=-1 .
$$

- The quaternions don't commute!
- A useful mnemonic for multiplication is this picture:

Figure: Multiplying quaternions. Figure by John Baez.

- If you have studied vectors, you may also recognize i, j and k as unit vectors.
- The quaternion product is the same as the cross product of vectors:

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}
$$

- Except, for the cross product:

$$
\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=\mathbf{0}
$$

while for quaternions, this is -1 .

- In fact, we can think of a quaternion as having a scalar (number) part and a vector part:

$$
v_{0}+v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}=\left(v_{0}, \mathbf{v}\right)
$$

We can use the cross product, and the dot product:

$$
\mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
$$

to define the product of quaternions in yet another way:

$$
\left(v_{0}, \mathbf{v}\right)\left(w_{0}, \mathbf{w}\right)=\left(v_{0} w_{0}-\mathbf{v} \cdot \mathbf{w}, v_{0} \mathbf{w}+w_{0} \mathbf{v}+\mathbf{v} \times \mathbf{w}\right)
$$

Puzzle
Check that this formula gives the same result for quaternion multiplication as the explicit rules for multiplying i, j, and k.

I promised we could use quaternions to do 3d rotations, so here's how:

- Think of three-dimensional space as being purely imaginary quaternions:

$$
\mathbb{R}^{3}=\{x i+y j+z k: x, y, z \in R\}
$$

- Just like for complex numbers, the rotations are done using unit quaternions, like:

$$
\cos \varphi+i \sin \varphi, \quad \cos \varphi+j \sin \varphi, \quad \cos \varphi+k \sin \varphi
$$

- By analogy with Euler's formula, we will write these as:

$$
e^{i \varphi}, \quad e^{j \varphi} \quad e^{k \varphi}
$$

But there are many more unit quaternions than these!

- i, j, and k are just three special unit imaginary quaternions.
- Take any unit imaginary quaternion, $\mathbf{u}=u_{1} i+u_{2} j+u_{3} k$. That is, any unit vector.
- Then

$$
\cos \varphi+\mathbf{u} \sin \varphi
$$

is a unit quaternion.

- By analogy with Euler's formula, we write this as:

$$
e^{\mathbf{u} \varphi} .
$$

Theorem
If \mathbf{u} is a unit vector, and \mathbf{v} is any vector, the expression $e^{\mathbf{u} \varphi} \mathbf{v} e^{-\mathbf{u} \varphi}$,
gives the result of rotating \mathbf{v} about the axis in the \mathbf{u} direction.

Proof.

I will prove this for $\mathbf{u}=i$, since there is nothing special about the i direction.

$$
\begin{array}{rll}
& e^{i \varphi}\left(v_{1} i+v_{2} j+v_{3} k\right) e^{-i \varphi} & \\
= & e^{i \varphi}\left(v_{1} i+\left(v_{2}+v_{3} i\right) j\right) e^{-i \varphi} & \text { Puzzle! } \\
= & e^{i \varphi}\left(v_{1} i\right) e^{-i \varphi}+e^{i \varphi}\left(v_{2}+v_{3} i\right) j e^{-i \varphi} & \\
= & e^{i \varphi}\left(v_{1} i\right) e^{-i \varphi}+e^{i \varphi}\left(v_{2}+v_{3} i\right) e^{+i \varphi} j & \text { Puzzle! } \\
= & v_{1} i+e^{i 2 \varphi}\left(v_{2}+v_{3} i\right) j & \text { Puzzle! }
\end{array}
$$

Note the 2φ !

Theorem (Improved)

If \mathbf{u} is a unit vector, and \mathbf{v} is any vector, the expression

$$
e^{\mathbf{u} \varphi} \mathbf{v} e^{-\mathbf{u} \varphi}
$$

gives the result of rotating \mathbf{v} about the axis in the \mathbf{u} direction by 2φ degrees.

Amazingly, this 2φ is important when describing electrons!

Let's write the rotation we get from the unit quaternion $e^{\mathbf{u} \varphi}$ as:

$$
R_{e^{\mathbf{u} \varphi}}(\mathbf{v})=e^{\mathbf{u} \varphi} \mathbf{v} e^{-\mathbf{u} \varphi}
$$

This is a rotation by 2φ. To rotate by φ, we need:

$$
R_{e^{\mathbf{u} \varphi / 2}}(\mathbf{v})=e^{\mathbf{u} \varphi / 2} \mathbf{v} e^{-\mathbf{u} \varphi / 2}
$$

And to say how this relates to electrons, we need to talk about quantum mechanics.

Quantum mechanics says that particles are represented by waves:

- The simplest kind of wave is a function:

$$
\psi: \mathbb{R} \rightarrow \mathbb{R}
$$

- But since we live in three dimensions:

$$
\psi: \mathbb{R}^{3} \rightarrow \mathbb{R}
$$

- And because it's quantum, it's complex-valued:

$$
\psi: \mathbb{R}^{3} \rightarrow \mathbb{C}
$$

- Yet, in 1924, Wolfgang Pauli (secretly) discovered that for electrons, it's quaternion-valued:

$$
\psi: \mathbb{R}^{3} \rightarrow \mathbb{H}
$$

If we rotate most particles, we rotate its wave:

$$
R_{e^{\mathbf{u} \varphi / 2}} \psi(\mathbf{v}):=\psi\left(R_{e^{-\mathbf{u} \varphi / 2}}(\mathbf{v})\right)
$$

But to rotate an electron, Pauli found:

$$
R_{e^{\mathbf{u} \varphi / 2}} \psi(\mathbf{v}):=e^{\mathbf{u} \varphi / 2} \psi\left(R_{e^{-\mathbf{u} \varphi / 2}}(\mathbf{v})\right)
$$

In particular, for a $\varphi=360^{\circ}$ rotation:

$$
R_{e^{\mathrm{u} 360 / 2}} \psi(\mathbf{v})=e^{\mathbf{u} 180^{\circ}} \psi(\mathbf{v})=-\psi(\mathbf{v}) .
$$

Electrons can tell if they have been rotated 360 degrees!

