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Prologue

Figure : R0|1

R0|1 has a single odd coordinate θ, and θ2 = 0, so a power
series terminates immediately:

f (θ) = f (0) + f ′(0)θ.

In essence, this means we should regard θ as infinitesimal.
Thus R0|1 is a single point with an infinitesimal neighborhood,
as depicted above.
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Prologue

We will investigate the superpoint with mathematical tools.

Inside, we will find all the super-Minkowski spacetimes of string
theory and M-theory, going up to dimension 11.

Then we will find the strings, Dp-branes and M-branes
themselves, thanks to the brane bouquet of Fiorenza, Sati and
Schreiber.
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The brane bouquet.
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Figure : Cartoon by Polchinski.

Type IIA string theory contains D0-branes.
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Figure : Cartoon by Polchinski.

As the number N of D0-branes grows large, type IIA string
theory becomes M-theory.



Brane condensation

This means the 10-dimensional superspacetime where type IIA
strings live “grows an extra dimension” to become the
11-dimensional superspacetime of M-theory.

Infinitesimally,

R9,1|16+16  R10,1|32.



Central extensions

Given
I g a Lie superalgebra,
I ω : Λ2g→ R a 2-cocycle:

ω([X ,Y ],Z )± ω([Y ,Z ],X )± ω([Z ,X ],Y ) = 0,

we can form the central extension:

gω = g⊕ Rc,

with one extra generator c, even and central, and modified Lie
bracket:

[X ,Y ]ω = [X ,Y ] + ω(X ,Y )c.

I’ll write
gω → g

for the map setting c to zero, and often use this arrow to denote
a central extension.
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The brane bouquet, step 1

Note the parallels:
I M-theory spacetime has one more bosonic dimension than

type IIA string theory spacetime.
I gω has one more bosonic dimension than g.

I In fact, R10,1|32 is a central extension of R9,1|16+16 . . .
I . . . by the 2-cocycle on R9,1|16+16

dθΓ11dθ

that gives rise to the WZW term of the D0-brane action.

The brane bouquet proposal, step 1
Brane condensation is central extension.
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For this to make sense, super-Minkowski spacetime

RD−1,1|S

must be a Lie superalgebra, and it is:

[Qα,Qβ] = −2ΓµαβPµ

Moreover, on R9,1|16+16, the 2-form

µD0 = dθΓ11dθ

must define a 2-cocycle, and it does:
I µD0 is left invariant under translations in superspace.
I dµD0 = 0.



The superpoint

This prompts us to ask

Question
Are other dimensions of spacetime also the result of brane
condensation/central extension?

At the most extreme end, let us start with the superpoint

R0|1

with a single odd coordinate θ.
This has exactly one 2-cocycle:

dθ ∧ dθ

Extending by this 2-cocycle gives R1|1, the superline, the
worldline of the superparticle.

R1|1 → R0|1.



The superpoint

Let us a play a game with two moves:

I We can extend by 2-cocycles, satisfying a suitable
invariance condition.

I We can double the number of spinors.

This will lead us from the superpoint up to 11 dimensions and
beyond.



The superpoint

First, we will double the number of fermionic dimensions:

R0|2

We will write this operation as follows:

R0|2 oooo R0|1

Now, R0|2 has two odd generators, θ1 and θ2, and there are
three 2-cocycles:

dθ1 ∧ dθ1, dθ1 ∧ dθ2, dθ2 ∧ dθ2.

Extending by all three we get:

R3|2 → R0|2.



Dimension 3

Now something remarkable happens: a metric appears!

Aut0(R3|2) = R+ × Spin(2,1).

We didn’t put it in, but by looking at the automorphisms of the
algebra, the three even generators in R3|2 transform under
Spin(2,1) as vectors, and the two odd generators as spinors.

Thanks to this metric, we can look for Spin(2,1)-invariant
2-cocycles on R2,1|2. There are none, because the only
Spin(2,1)-invariant map:

2⊗ 2→ 1

is antisymmetric.



Dimension 4

Double the number of spinors again:

R2,1|2+2 oo
oo R2,1|2

There is precisely one Spin(2,1)-invariant 2-cocycle, and
extending by this gives:

R3,1|4 → R2,1|2+2

Again, the metric is not a choice:

Aut0(R3,1|4) = R+ × Spin(3,1)× U(1).

U(1) is the R-symmetry group.

There are no further Spin(3,1)-invariant 2-cocycles.
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Dimension 6

Double the number of spinors again:

R3,1|4+4 oo
oo R3,1|4

Now there are two Spin(3,1)-invariant 2-cocycles.

R5,1|8 → R3,1|4+4.

Again, the metric is not a choice:

Aut0(R5,1|8) = R+ × Spin(5,1)× Sp(1).

Sp(1) is the R-symmetry group.

There are no further Spin(5,1)-invariant 2-cocycles.
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Dimension 10

Now we have a choice of two different ways to double the
spinors, a type IIA and type IIB:

R5,1|8+8 oo
oo R5,1|8

and
R5,1|8+8 oo

oo R5,1|8

There are no Spin(5,1)-invariant 2-cocycles in type IIB, but on
type IIA there are four:

R9,1|16 → R5,1|8+8.

Again, the metric is not a choice:

Aut0(R9,1|16) = R+ × Spin(9,1).

There are no further Spin(9,1)-invariant 2-cocycles.
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Dimension 11

Again, we have a choice of two different ways to double the
spinors, a type IIA and type IIB:

R9,1|16+16 oo
oo R9,1|16

and
R9,1|16+16 oo

oo R9,1|16

There are no Spin(9,1)-invariant 2-cocycles in type IIB, but on
type IIA there is one, the one we started with:

R10,1|32 → R9,1|16+16.



In summary:
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Lie algebra cohomology

What does the 2-cocycle

µD0 = dθΓ11dθ

have to do with the D0-brane?

It gives rise to the D0-brane’s WZW term:

SD0 = −m
∫ √

−Π0 · Π0dτ −m
∫
θΓ11θ̇dτ.



Lie algebra cohomology

In the general, the Lie algebra cohomology of RD−1,1|S gives
rise to the WZW terms for Green–Schwarz actions. To compute
this, write a basis of left-invariant 1-forms on super-Minkowski:

eµ = dxµ − θΓµθ, dθα.

Find the Lorentz-invariant combinations, such as:

µp = eν1 ∧ · · · ∧ eνp ∧ dθΓν1···νpdθ.

This a (p + 2)-cocycle if and only if it is closed:

dµp = 0.

This happens only for special values of D,N and p.



The brane scan



The brane bouquet

I These cocycles really determine the theory.
I Schreiber has a mathematical machine that takes cocycles

and produces action functionals.

Lie algebra cocycle on g  WZW term on G

I Centrally extending by these cocycles, we get new
algebras.



The brane bouquet
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Beyond Lie algebras

But these are not 2-cocycles, so:

I stringhet, stringIIA, stringIIB and m2brane are not Lie
algebras!

I Instead, they are L∞-algebras.



L∞-algebras

An L∞-algebra g is like a Lie algebra, defined on a chain
complex:

g0
∂←− g1

∂←− · · · ∂←− gn
∂←− · · ·

But the Jacobi identity does not hold:

[[X ,Y ],Z ]± [[Y ,Z ],X ]± [[Z ,X ],Y ] 6= 0.

Instead, it holds up to boundary terms:

[[X ,Y ],Z ]± [[Y ,Z ],X ]± [[Z ,X ],Y ] = ∂[X ,Y ,Z ].

Where this new, trilinear bracket:

[−,−,−] : g3⊗ → g,

in turn satisfies an identity like Jacobi up to boundary terms
controlled by a 4-linear bracket . . .



L∞-algebras: examples

A Lie algebra is an L∞-algebra concentrated in degree 0:

g0 ←− 0←− 0←− · · ·

Given any (p + 2)-cocycle ω : Λp+2g→ R, we can construct an
L∞-algebra gω as follows:

g←− 0←− · · · ←− R

where
I g is in degree 0, R is in degree p.
I [−,−] is the Lie bracket.
I The (p + 2)-linear bracket, [−, · · · ,−] = ω, is the cocycle.
I All other brackets are 0.

All of this generalizes to superalgebras in a straightforward way.
This is how we construct stringhet, stringIIA, stringIIB and
m2brane from RD−1,1|S.
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Dp-branes and the M5-brane

Thanks to stringhet, stringIIA, stringIIB and m2brane, we can find
the branes missing from the brane scan.

Fact
The left-invariant forms on gω are generated by the left-invariant
forms on g with one additional (p + 1)-form b such that db = ω.

For example:

I On stringIIA = R9,1|16+16
µIIA , the left-invariant forms are

I from R9,1|16+16:

eν = dxν − θΓνdθ, dθα

I and a 2-form F such that

dF = µIIA.



Dp-branes and the M5-brane

Thanks to F , there are new cocycles on stringIIA.

µDp =

(p+2)/2∑
k=0

cp
k eν1 ∧ · · · ∧eνp−2k ∧dθ∧ Γν1···νp−2k dθ∧F ∧ · · · ∧F .

I cp
k are some coefficients chosen to make dµDp = 0.

I Applying Schreiber’s machine to this cocycle gives the
Dp-brane action.

I Similarly, we can find a cocycle for the M5-brane on
m2brane.
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Figure : R0|1
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