Publications and Preprints
Papers:
1. A model category structure on the category
of simplicial categories, Trans. Amer. Math. Soc. 359 (2007),
2043-2058.
(math.AT/0406507)
2. Three models for the homotopy
theory of homotopy theories, Topology 46
(2007), 397-436.
(math.AT/0504334)
Longer thesis
version (University of Notre Dame, 2005)
3. Rigidification of algebras over multi-sorted theories, Algebr. Geom. Topol. 6 (2006) 1925-1955.
(math.AT/0508152)
4. Simplicial monoids and Segal categories, Contemp.
Math. 431 (2007) 59-83.
and correction
(math.AT/0508416; math.AT/0806.1767)
5. A characterization of fibrant Segal categories, Proc.
Amer. Math. Soc. 135 (2007) 4031-4037.
(math.AT/0603400)
6. A survey of (∞,1)-categories, in J. Baez
and J. P. May, Towards Higher Categories,
IMA Volumes in Mathematics and Its
Applications, Springer, 2010, 69-83.
(math.AT/0610239)
7. Adding inverses to diagrams encoding algebraic
structures, Homology, Homotopy Appl. 10(2), 2008, 149–174.
(math.AT/0610291)
8. Complete Segal spaces arising from simplicial
categories, Trans. Amer. Math. Soc.
361 (2009), 525-546.
(math.AT/0704.1624)
9. Adding inverses to diagrams II: Invertible homotopy theories are spaces, Homology, Homotopy Appl. 10(2), 2008,
175–193.
(math.AT/0710.2254)
10. Homotopy
fiber products of homotopy theories, Israel Journal of Mathematics 185
(2011), 389-411.
(math.AT/0811.3175)
11. Derived Hall
algebras for stable homotopy theories, Cah. Topol. Géom. Différ. Catég. 54 (2013), no. 1,
28–55.
(math.AT/0910.1861)
12. Homotopy
limits of model categories and more general homotopy
theories, Bull. Lond. Math. Soc. 44 (2012), no. 2,
311–322.
(math.AT/1010.0717)
13. Models for (∞,
n)-categories and the cobordism hypothesis, in H. Sati and U. Schreiber, ed., Mathematical Foundations of Quantum Field Theory and Perturbative
String Theory, Proc. Sympos. Pure Math. 83 (2011) 17-30.
(math.AT/1011.0110)
14. Groupoid cardinality and
Egyptian fractions (with C. Walker), College
Math. J. 46 (2015) 122-129.
15. Reedy categories and the θ-construction (with C. Rezk), Math. Z. 274
(1), 2013, 499-514.
(math.AT/1110.1066)
16. Comparison of models for (∞,n)-categories,
I (with C. Rezk), Geom. Topol. 17 (2013), no. 4,
2163–2202.
(math.AT/1204.2013)
17. Reedy categories which encode
the notion of category actions (with P. Hackney), Fund. Math. 228 (2015), no. 3, 193–222.
(math.AT/1207.3467)
18. Group actions on Segal operads (with P. Hackney), Israel J. Math. 202 (2014), no. 1, 423–460.
(math.AT/1207.3465)
19. Homotopy
colimits of model categories, An alpine expedition through algebraic topology, Contemp. Math., 617 (2014), 31-37.
(math.AT/1212.4541)
20. Group actions on Γ-spaces (with P. Hackney)
(math.AT/1212.4542)
21. Cluster categories for topologists (with M. Robertson), Stacks and Categories in Geometry, Topology
and Algebra, Contemp. Math. 643 (2015) 25-35.
(math.AT/1308.2560)
22. Fixed
points of p-toral
groups acting on partition complexes (with R. Joachimi,
K. Lesh, V. Stojanoska, and
K. Wickelgren), Women
in Topology: Collaborations in Homotopy Theory,
Contemp. Math. 641 (2015), 83-96.
(math.AT/1401.0491)
23. Comparison of models for (∞,n)-categories,
II (with C. Rezk)
(math.AT/1406.4182)
24. Classification of
problematic subgroups of U(n) (with R. Joachimi, K. Lesh, V. Stojanoska, and K. Wickelgren)
(math.AT/1407.0062)
25. Equivalence of models for equivariant
(∞,1)-categories, to appear in Glasgow Mathematical Journal.
(math.AT/1408.0038)
26. Equivariant complete
Segal spaces (with S.G. Chadwick), Homology,
Homotopy, and Appl. 17(2),
2015, 371-381.
(math.AT/1502.06637)
27. Action graphs and Catalan numbers (with G. Alvarez and
R. Lopez), J. Integer Seq. 18 (2015),
Article 15.7.2.
(math.CO/1503.00044)
Unpublished Notes:
Workshop on the homotopy
theory of homotopy theories
Return to Julie Bergner's web page
http://www.math.ucr.edu/~jbergner/papers.html
Last modified: 4 August 2015