String Topology and the Based Loop Space

Eric J. Malm

Stanford University Mathematics Department emalm@math.stanford.edu

8 Nov 2009 AMS Western Section Meeting UC Riverside

Eric J. Malm String Topology and the Based Loop Space

・ロト ・ 同ト ・ ヨト ・ ヨト

String Topology Hochschild Homology Results

String Topology

Fix k a commutative ring. Let

- *M* be a closed, *k*-oriented, smooth manifold of dimension *d*
- $LM = Map(S^1, M)$

Э

String Topology Hochschild Homology Results

String Topology

Fix k a commutative ring. Let

- *M* be a closed, *k*-oriented, smooth manifold of dimension *d*
- $LM = Map(S^1, M)$
- $H_{*+d}(LM)$ has (Chas-Sullivan, 1999)
 - a graded-commutative *loop product* \circ , from intersection product on *M* and concatenation product on ΩM
 - a degree-1 operator Δ with Δ^2 = 0, from the rotation of S¹

イロト イポト イヨト イヨト

String Topology Hochschild Homology Results

String Topology

Fix k a commutative ring. Let

- *M* be a closed, *k*-oriented, smooth manifold of dimension *d*
- $LM = Map(S^1, M)$
- $H_{*+d}(LM)$ has (Chas-Sullivan, 1999)
 - a graded-commutative *loop product* \circ , from intersection product on *M* and concatenation product on ΩM
 - a degree-1 operator Δ with Δ^2 = 0, from the rotation of S¹

Make $H_{*+d}(LM)$ a Batalin-Vilkovisky (BV) algebra:

• • and Δ combine to produce a degree-1 Lie bracket on $H_{*+d}(LM)$, called the *loop bracket*.

Also an algebra over H_* of the framed little discs operad. (Getzler)

・ロト ・ 同ト ・ ヨト ・ ヨト

String Topology Hochschild Homology Results

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibit similar operations:

- $HH_*(A)$ has a degree-1 Connes operator *B* with $B^2 = 0$,
- HH*(A) has a graded-commutative cup product ∪ and a degree-1 Lie bracket compatible with ∪.

String Topology Hochschild Homology Results

Hochschild Homology and Cohomology

The Hochschild homology and cohomology of an algebra A exhibit similar operations:

- $HH_*(A)$ has a degree-1 Connes operator *B* with $B^2 = 0$,
- HH*(A) has a graded-commutative cup product ∪ and a degree-1 Lie bracket compatible with ∪.

Goal: relate these structures to string topology of *M* for certain DG algebras associated to *M*:

- C*M, cochains of M
- $C_*\Omega M$, chains on the based loop space ΩM

String Topology Hochschild Homology Results

Results

Theorem (M.)

Let M be a connected, k-oriented Poincaré duality space of formal dimension d. Then Poincaré duality induces an isomorphism

 $D: HH^*(C_*\Omega M) \to HH_{*+d}(C_*\Omega M).$

イロト イポト イヨト イヨト

String Topology Hochschild Homology Results

Results

Theorem (M.)

Let M be a connected, k-oriented Poincaré duality space of formal dimension d. Then Poincaré duality induces an isomorphism

$$D: HH^*(C_*\Omega M) \to HH_{*+d}(C_*\Omega M).$$

Uses "derived" Poincaré duality (Klein, Dwyer-Greenlees-Iyengar):

- Generalize co/homology with local coefficients *E* to allow $C_*\Omega M$ -module coefficients
- Cap product with [M] still induces an isomorphism

$$H^*(M;E) \to H_{*+d}(M;E).$$

String Topology Hochschild Homology Results

Results

Compatibility of Hochschild operations under D:

Theorem (M.)

 $HH^*(C_*\Omega M)$ with the Hochschild cup product and the operator $-D^{-1}BD$ is a BV algebra, compatible with the Hochschild Lie bracket.

・ロト ・ 同ト ・ ヨト・

String Topology Hochschild Homology Results

Results

Compatibility of Hochschild operations under D:

Theorem (M.)

 $HH^*(C_*\Omega M)$ with the Hochschild cup product and the operator $-D^{-1}BD$ is a BV algebra, compatible with the Hochschild Lie bracket.

Theorem (M.)

When M is a manifold, the composite of D with the Goodwillie isomorphism $HH_*(C_*\Omega M) \rightarrow H_*(LM)$ takes this BV structure to that of string topology.

Resolves an outstanding conjecture about string topology and Hochschild cohomology.

Previous Results Homological Algebra

Previous Results

Pre-String Topology

- $HH_*(C_*\Omega X) \cong H_*LX$, taking B to Δ (Goodwillie)
- $HH_*(C^*X) \cong H^*LX$, taking B to Δ , for X 1-conn (Jones)

・ロト ・ 同ト ・ ヨト・

-

Previous Results Homological Algebra

Previous Results

Pre-String Topology

- $HH_*(C_*\Omega X) \cong H_*LX$, taking *B* to Δ (Goodwillie)
- $HH_*(C^*X) \cong H^*LX$, taking B to Δ , for X 1-conn (Jones)

String Topology and C*M

- Thom spectrum *LM*^{-*TM*} an algebra over the cactus operad (equivalent to the framed little discs operad) (Cohen-Jones)
- Cosimplicial model for LM^{-TM} shows $HH^*(C^*M) \cong H_{*+d}(LM)$ as rings, M 1-conn
- When char k = 0, HH*(C*M) a BV algebra, isom to H_{*+d}(LM), still need M 1-conn (Félix-Thomas)

Previous Results Homological Algebra

Previous Results

Koszul Duality

- C a 1-conn finite-type coalgebra, HH^{*}(C[∨]) ≅ HH^{*}(Cobar(C)), preserving the cup and bracket (Félix-Menichi-Thomas)
- When M 1-conn and $C = C_*M$, gives $HH^*(C^*M) \cong HH^*(C_*\Omega M)$

イロト イポト イヨト イヨト

Previous Results Homological Algebra

Previous Results

Koszul Duality

- C a 1-conn finite-type coalgebra, HH*(C[∨]) ≅ HH*(Cobar(C)), preserving the cup and bracket (Félix-Menichi-Thomas)
- When M 1-conn and $C = C_*M$, gives $HH^*(C^*M) \cong HH^*(C_*\Omega M)$

Group Rings

G a discrete group, M an aspherical K(G, 1) manifold.

- $H_{*+d}(G, kG^{\text{conj}})$ is a ring, isomorphic to $H_{*+d}(LM)$ (Abbaspour-Cohen-Gruher)
- $HH^*(kG)$ a BV algebra, isomorphic to $H_{*+d}(LM)$ (Vaintrob)

In this case, $\Omega M \simeq G$ so our result generalizes these ones

・ロト ・ 同ト ・ ヨト・

Homological Algebra of $C_*\Omega M$

Models for Homological Algebra

Replace ΩM with an equivalent top group so $C_*\Omega M$ a DGA

- $C_*\Omega M$ a cofibrant chain complex, so category of modules has cofibrantly generated model structure
- Two-sided bar constructions B(-, C_{*}ΩM, -) yield suitable models for Ext, Tor, and Hochschild co/homology of C_{*}ΩM

イロト イポト イヨト イヨト

Homological Algebra of $C_*\Omega M$

Models for Homological Algebra

Replace ΩM with an equivalent top group so $C_*\Omega M$ a DGA

- $C_*\Omega M$ a cofibrant chain complex, so category of modules has cofibrantly generated model structure
- Two-sided bar constructions B(-, C_{*}ΩM, -) yield suitable models for Ext, Tor, and Hochschild co/homology of C_{*}ΩM

Rothenberg-Steenrod Constructions

Connect these bar constructions over $C_*\Omega M$ to topological settings

- $C_*M \simeq B(k, C_*\Omega M, k)$
- $C_*(F \times_G EG) \simeq B(C_*F, C_*G, k)$ for G a top group

Derived Poincaré Duality Hochschild Homology and Cohomology Ring Structures BV Algebras

Derived Poincaré Duality

Co/homology with local coefficients: for *E* a $k[\pi_1 M]$ -module,

 $H_*(M; E) \cong \operatorname{Tor}_*^{C_*\Omega M}(E, k), \quad H^*(M; E) \cong \operatorname{Ext}_{C_*\Omega M}^*(k, E)$

-

Derived Poincaré Duality

Co/homology with local coefficients: for *E* a $k[\pi_1 M]$ -module,

 $H_*(M; E) \cong \operatorname{Tor}_*^{C_*\Omega M}(E, k), \quad H^*(M; E) \cong \operatorname{Ext}_{C_*\Omega M}^*(k, E)$

• $E \otimes_{C_*\Omega M}^{L} k$ and $R \operatorname{Hom}_{C_*\Omega M}(k, E)$ give "derived" co/homology with local coefficients in $E \neq C_*\Omega M$ -module

 Introduction
 Derived Poincaré Duality

 Background
 Hochschild Homology and Cohom

 Results and Methods
 Ring Structures

 Future Directions
 BV Algebras

Derived Poincaré Duality

Co/homology with local coefficients: for *E* a $k[\pi_1 M]$ -module,

 $H_*(M; E) \cong \operatorname{Tor}_*^{C_*\Omega M}(E, k), \quad H^*(M; E) \cong \operatorname{Ext}_{C_*\Omega M}^*(k, E)$

- $E \otimes_{C_*\Omega M}^L k$ and $R \operatorname{Hom}_{C_*\Omega M}(k, E)$ give "derived" co/homology with local coefficients in $E \neq C_*\Omega M$ -module
- View $[M] \in H_d M$ as a class in $\operatorname{Tor}_d^{C_*\Omega M}(k,k)$. Then

$$\operatorname{ev}_{[M]} : R \operatorname{Hom}_{C_*\Omega M}(k, E) \to E \otimes^L_{C_*\Omega M} k[d]$$

a weak equivalence for *E* a $k[\pi_1 M]$ -module

Derived Poincaré Duality

Co/homology with local coefficients: for *E* a $k[\pi_1 M]$ -module,

 $H_*(M; E) \cong \operatorname{Tor}_*^{C_*\Omega M}(E, k), \quad H^*(M; E) \cong \operatorname{Ext}_{C_*\Omega M}^*(k, E)$

- $E \otimes_{C_*\Omega M}^L k$ and $R \operatorname{Hom}_{C_*\Omega M}(k, E)$ give "derived" co/homology with local coefficients in $E \ a \ C_*\Omega M$ -module
- View $[M] \in H_d M$ as a class in $\operatorname{Tor}_d^{C_*\Omega M}(k,k)$. Then

$$\operatorname{ev}_{[M]} : R \operatorname{Hom}_{C_*\Omega M}(k, E) \to E \otimes_{C_*\Omega M}^{L} k[d]$$

a weak equivalence for *E* a $k[\pi_1 M]$ -module

 Algebraic Postnikov tower, compactness of k as a C_{*}ΩM-module show a weak equivalence for all C_{*}ΩM-modules E.

Derived Poincaré Duality Hochschild Homology and Cohomology Ring Structures BV Algebras

Hochschild Homology and Cohomology

Let Ad be $C_*\Omega M$ with $C_*\Omega M$ -module structure from conjugation

・ロト ・ 同ト ・ ヨト・

Hochschild Homology and Cohomology

Let Ad be $C_*\Omega M$ with $C_*\Omega M$ -module structure from conjugation

 Show Hochschild co/homology isomorphic to Ext^{*}_{C*ΩM}(k, Ad) and Tor^{C*ΩM}_{*}(Ad, k)

Hochschild Homology and Cohomology

Let Ad be $C_*\Omega M$ with $C_*\Omega M$ -module structure from conjugation

- Show Hochschild co/homology isomorphic to Ext^{*}_{C*ΩM}(k, Ad) and Tor^{C*ΩM}_{*}(Ad, k)
- Combine with derived Poincaré duality to get D:

$$HH^{*}(C_{*}\Omega M) \xrightarrow{\cong} Ext^{*}_{C_{*}\Omega M}(k, Ad)$$

$$\downarrow^{|}_{\mathfrak{S}|D} \qquad \stackrel{\cong}{\downarrow^{|}} v$$

$$HH_{*+d}(C_{*}\Omega M) \xrightarrow{\cong} Tor^{C_{*}\Omega M}_{*+d}(Ad, k)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Hochschild Homology and Cohomology

Let Ad be $C_*\Omega M$ with $C_*\Omega M\text{-module}$ structure from conjugation

- Show Hochschild co/homology isomorphic to Ext^{*}_{C*ΩM}(k, Ad) and Tor^{C*ΩM}_{*}(Ad, k)
- Combine with derived Poincaré duality to get D:

$$HH^{*}(C_{*}\Omega M) \xrightarrow{\cong} Ext^{*}_{C_{*}\Omega M}(k, \mathrm{Ad})$$

$$\downarrow^{\cong}_{V} D \qquad \cong \downarrow^{ev}_{[M]}$$

$$HH_{*+d}(C_{*}\Omega M) \xrightarrow{\cong} Tor^{C_{*}\Omega M}_{*+d}(\mathrm{Ad}, k)$$

 Comes essentially from B(G,G,G) ≅ B(*,G,G × G^{op}) homeo plus Eilenberg-Zilber equivalences

Hochschild Homology and Cohomology

Let Ad be $C_*\Omega M$ with $C_*\Omega M\text{-module}$ structure from conjugation

- Show Hochschild co/homology isomorphic to Ext^{*}_{C*ΩM}(k, Ad) and Tor^{C*ΩM}_{*}(Ad, k)
- Combine with derived Poincaré duality to get D:

$$HH^{*}(C_{*}\Omega M) \xrightarrow{\cong} Ext^{*}_{C_{*}\Omega M}(k, \mathrm{Ad})$$

$$\downarrow^{\square}_{V} \qquad \cong \downarrow^{P}_{V} \qquad \cong \downarrow^{P}_{V} \mathbb{I}$$

$$HH_{*+d}(C_{*}\Omega M) \xrightarrow{\cong} \operatorname{Tor}_{*+d}^{C_{*}\Omega M}(\mathrm{Ad}, k)$$

- Comes essentially from B(G, G, G) ≅ B(*, G, G × G^{op}) homeo plus Eilenberg-Zilber equivalences
- Need to insert SH-linear maps, though

Ring Structures

Show Hochschild cup product agrees with Chas-Sullivan loop product

イロト 不得下 イヨト イヨト

Ring Structures

Show Hochschild cup product agrees with Chas-Sullivan loop product

 Umkehr map from Δ_M makes LM^{-TM} a ring spectrum, induces loop product in H_{*} via Thom isom LM^{-TM} ∧ Hk ≃ Σ^{-d}LM ∧ Hk

イロト イポト イヨト イヨト

Show Hochschild cup product agrees with Chas-Sullivan loop product

- Umkehr map from Δ_M makes LM^{-TM} a ring spectrum, induces loop product in H_{*} via Thom isom LM^{-TM} ∧ Hk ≃ Σ^{-d}LM ∧ Hk
- · Fiberwise Atiyah duality and simplicial techniques show that

$$LM^{-TM} \simeq \Gamma_{\mathcal{M}}(S_{\mathcal{M}}[LM]) \simeq S[\Omega M]^{h\Omega M} \simeq THH_{S}(S[\Omega M])$$

イロト イポト イヨト イヨト

Show Hochschild cup product agrees with Chas-Sullivan loop product

- Umkehr map from Δ_M makes LM^{-TM} a ring spectrum, induces loop product in H_{*} via Thom isom LM^{-TM} ∧ Hk ≃ Σ^{-d}LM ∧ Hk
- · Fiberwise Atiyah duality and simplicial techniques show that

$$LM^{-TM} \simeq \Gamma_M(S_M[LM]) \simeq S[\Omega M]^{h\Omega M} \simeq THH_S(S[\Omega M])$$

 LM^{-TM} ≃ THH_S(S[ΩM]) as ring spectra by comparing McClure-Smith cup-pairings on underlying cosimplicial objects

Show Hochschild cup product agrees with Chas-Sullivan loop product

- Umkehr map from Δ_M makes LM^{-TM} a ring spectrum, induces loop product in H_{*} via Thom isom LM^{-TM} ∧ Hk ≃ Σ^{-d}LM ∧ Hk
- · Fiberwise Atiyah duality and simplicial techniques show that

$$LM^{-TM} \simeq \Gamma_{\mathcal{M}}(S_{\mathcal{M}}[LM]) \simeq S[\Omega M]^{h\Omega M} \simeq THH_{S}(S[\Omega M])$$

- LM^{-TM} ≃ THH_S(S[ΩM]) as ring spectra by comparing McClure-Smith cup-pairings on underlying cosimplicial objects
- Similarly, $S[LM] \simeq [\Omega M]_{h\Omega M} \simeq THH^{S}(S[\Omega M])$

・ロト ・ 同ト ・ ヨト・

Show Hochschild cup product agrees with Chas-Sullivan loop product

- Umkehr map from Δ_M makes LM^{-TM} a ring spectrum, induces loop product in H_{*} via Thom isom LM^{-TM} ∧ Hk ≃ Σ^{-d}LM ∧ Hk
- · Fiberwise Atiyah duality and simplicial techniques show that

$$LM^{-TM} \simeq \Gamma_{\mathcal{M}}(S_{\mathcal{M}}[LM]) \simeq S[\Omega M]^{h\Omega M} \simeq THH_{S}(S[\Omega M])$$

- LM^{-TM} ≃ THH_S(S[ΩM]) as ring spectra by comparing McClure-Smith cup-pairings on underlying cosimplicial objects
- Similarly, $S[LM] \simeq [\Omega M]_{h\Omega M} \simeq THH^{S}(S[\Omega M])$
- Smash with *Hk*, pass to equivalent derived category Ho*k*-Mod to recover chain-level equivalences

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction Derived Poincaré Background Hochschild Hom Results and Methods Ring Structures Future Directions BV Algebras

BV Algebra Structures

 $HH^*(A)$ has cap product action on $HH_*(A)$ for any algebra A

Eric J. Malm String Topology and the Based Loop Space

・ロト ・ 同ト ・ ヨト ・ ヨト

э

BV Algebra Structures

 $HH^*(A)$ has cap product action on $HH_*(A)$ for any algebra A

 Use "cap-pairing" to show that D isom given by Hochschild cap product against z ∈ HH_d(C_{*}ΩM):

$$D(f) = f \cap z$$

イロト イヨト イヨト

BV Algebra Structures

 $HH^*(A)$ has cap product action on $HH_*(A)$ for any algebra A

 Use "cap-pairing" to show that D isom given by Hochschild cap product against z ∈ HH_d(C_{*}ΩM):

$$D(f) = f \cap z$$

• z is image of [M], so B(z) = 0 by naturality

BV Algebra Structures

 $HH^*(A)$ has cap product action on $HH_*(A)$ for any algebra A

 Use "cap-pairing" to show that D isom given by Hochschild cap product against z ∈ HH_d(C_{*}ΩM):

$$D(f) = f \cap z$$

- z is image of [M], so B(z) = 0 by naturality
- Algebraic argument of Ginzburg, with signs corrected by Menichi, shows that $HH^*(C_*\Omega M)$ a BV algebra under \cup and $-D^{-1}BD$

BV Algebra Structures

 $HH^*(A)$ has cap product action on $HH_*(A)$ for any algebra A

 Use "cap-pairing" to show that D isom given by Hochschild cap product against z ∈ HH_d(C_{*}ΩM):

$$D(f) = f \cap z$$

- z is image of [M], so B(z) = 0 by naturality
- Algebraic argument of Ginzburg, with signs corrected by Menichi, shows that $HH^*(C_*\Omega M)$ a BV algebra under \cup and $-D^{-1}BD$
- BV Lie bracket also agrees with Hochschild Lie bracket

D and Goodwillie isom take \cup to loop product and $-D^{-1}BD$ to Δ

Future Directions

- Develop similar models for loop coproduct, string topology operations from fat graphs (Godin)
- Explore similar models using C_{*}ΩⁿM for higher string topology on H_{*}(Map(Sⁿ, M)), relate to Hu's work on HH^{*}_(n)(C^{*}M)
- Connect this description of string topology to topological field theories via Cobordism Hypothesis

```
http://math.stanford.edu/~emalm/
```

・ロト ・ 同ト ・ ヨト・