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We divide the remaining cases into four subcases according to whether o+ o
and § + a; are elements of ® or not, and show that eiva,g = 0. We first consider
the case where one of a+a;, 3+ belongs to ®. As the argument is the same, we
only treat the case where a + a; € ®. When o +«; € ®, we can write [Eq,. Eal =
Ca,.a Ea;+o With a non-zero number Cq, .. Thus,

[La.- Lol = eit(Eq) = {eiEa) = t({Eq.. Eal)
= Ca..aL(Ecx,+a) = Ca..aLc-I+a-
This means that the element
((La.. La]: Ls] = t([{Ba.. Eal. Esl)
is equal to a scalar multiple of vata,.6- BY the maximality of 7, this element is 0.
Using this we have
eiva,s = Lo, [Lay, Lall — "([Em [Ea;» Eﬁ]])-
If 3+ a; ¢ @, then 8+ 04 # 0 implies that [Eq.. Es) = 0. So
(Lo, Lg] = it Eg) = t(eiEp) = U[Eq,. Esl) =0,
which implies that e;v. s = 0. If 3+a; € D, then ;va g is equal to a scalar multiple
of Vs 3+, and the maximality of ¥ again implies that e;va.3 = 0.
1f both a + oy, 3 + ; are not in @, then
Loy Lal = ei(Ea) = t(eiEqa) = H{[Ea,» Ea]) =0
(La,, Lg] = ei(Ep) = t(eiBp) = (([Ea., Eg]) =0

Hence we have €;v4 3 = 0 in this case also.
Since i is arbitrary and e;va,g = 0, Assertion 3(3) tells us that va,g is equal to

a scalar multiple of ((E1n). In particular, we have

y=a1 4+ ano
and {a,8} = {e1 +- - + ok, Q41 4 -+ on_,} for some k. However, [Las Ll is
equal to L, in this case and so vq 3 = 0, which contradicts our choice of 7. Hence,
we have A = @ and Assertion 4 follows.

We are now ready to prove Theorem 2.2. We have constructed amap ¢ : g — U
which satisfies [t(X), t(Y)] = ¢([X, Y]). Our next task is to prove the universality
of the pair (U, t); however, this is obvious because the map ¢ : U — A is uniquely
determined by the requirements that #(ei) = p(Ei i) ete. a

2.2. The quantum algebra of type Ar1

Based on Theorem 2.2 Drinfeld and Jimbo introduced the quantum algebra
which is obtained as a “deformation”of the enveloping algebra of sl, = sl(r,C).
The definition is as follows. We choose Q(v) as a base field since it is not necessary
to assume it to be C(v). The element t; is often denoted by v™ and a;(hi) =

26,‘1 - 6i,j+1 - 6,+1'j by definition.

DEFINITION 2.5. Let K = Q(v) where v is an indeterminate. The quantum
algebra of type Ar—1 is the unital associative K-algebra U,(sl,) defined by the
following generators and relations.

Generators: tfl,e,-,fi 1<i<r—1).
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Relations:
t,'Ejt,'-—l = Uaj(h‘)ej, t,'fjti_l = U_aj(h‘)fj,

t; —t7!
-1

lei, fi] = &5

[t t;] =0, tit7 =47 =1,
ee; — (v + v'l)e,-eje,- +eel=0(i—j= +1),

eie; = e;e; (otherwise),

Ffi= o™ fifsfi+ fifE=0(i-j=+1),
fifi = fifi (otherwise).

These relations are called the (deformed) Serre relations.

DEFINITION 2.6. Let [k] = "—:_:v":_-,t, for k € N, and let [n]! = [Tr_,[k]. Then
£ is defined by
m _ S
£ = [n]!

Roughly speaking, the quantum algebra is the algebra which is obtained by
“integrating”the Cartan subalgebra and deforming the other relations “nicely”.

We may obtain representations of Uy(sl.} by deforming the representations of
8. We can also define tensor product representations by deforming the coproduct
of the enveloping algebra as follows.

Alt) =t ®ti, Ale)) =106 +e; @1,
Alfi)=fi®1+t® f,.
EXERCISE 2.7. Verify that A defines an algebra homomorphism from Uy(sl,)
to Uy(sl,) @ U, (sl,).
EXERCISE 2.8. Let V = K* and define p: Uy(sl;) —» End(V) by
Pt} =T+ (v —1)Ei; + (v = 1)Eryy 141,
ples) = Eiivr, p(fi) = Eiga.

Show that {p, V) is a representation of Uy,(sl,). This is called the natural (or vector)
representation of U, (sl,).

EXERCISE 2.9. Let V be the natural representation of U,(sl;). Decompose
V @V into a sum of irreducible U, (sl3)-submodules.



