Basics of Set-Constrained

and Unconstrained
Optimization

6.1 INTRODUCTION

In this chapter, we consider the optimization problem

minimize fl=x)
subject to z el

o The function f : R* -+ R that we wish to minimize is a real-valued function,
and is called the objective function, or cost Junction. The vector & is an n-vector
of independent variables, that is, * = [z1,%.,... ,mn]T € R*. The variables
- ®1,..., %y, are often referred to as decision variables, The set (1 is a subset of R",
~called the constraint set or feasible set. _

. The optimization problem above can be viewed as a decision problem that involves
-finding the “best” vector @ of the decision variables over all possible vectors in €. By
the “best” vector we mean the one that results in the smallest value of the objective
function. This vector is called the minimizer of f over §2. It is possible that there
Tiay be many minimizers. In this case, finding any of the minimizers will suffice.
“:There are also optimization problems that require maximization of the objective
function. These problems, however, can be represented in the above form because
maximizing f is equivalent to minimizing —~f. Therefore, we can confine our
attention to minimization problems without loss of generality.

- The above problem is a general form of a constrained optimization problem,
_because the decision variables are constrained to be in the constraint set . If

L= k™, then we refer to the problem as an unconstrained optimization problem. In

thig (_Eh_apter, we discuss basic properties of the general optimization problem above,
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Figure6.1 Examples of minimizers: 1 strict global minimizer; @2: strict local minimizer;
a3: local (not strict) minimizer

which includes the unconstrained case. In the remaining chapters of this part, we
deal with iterative algorithms for solving unconstrained optimization problems.

The constraint “z € (2" is called a set constrainz. Often, the constraint set {2 takes
the form §) = {x : h(z) = 0, g(z) < 0}, where h and g are given functions.
We refer to such constraints as functional constraints. The remainder of this chapter
deals with general set constraints, including the special case where {2 = R". The
case where {2 = R” is called the unconstrained case. In Parts Il and IV, we consider
constrained optimization problems with functional constraints.

In considering the general optimization problem above, we distinguish between
two kinds of minimizers, as specified by the following definitions.

Definition 6.1 Local minimizer. Suppose that f : R — Riis a real-valued function
defined on some set {2 C R*. A point * € ( is a local minimizer of f over {1 if
there exists £ > 0 such that f{z) > f(z*) forallz € 0\ {z*} and ||z — z7|| < &.

Global minimizer. Apointz* € (isa global minimizer of f over Qif f(z) > f(z*)
forallz € 1\ {=*}.

If, in the above definitions, we replace “>"" with “>”, then we have a strict local
minimizer and a strict global minimizer, respectively. ‘

In Figure 6.1, we graphically illustrate the above definitions for n = 1.

Giiven a real-valued function f, the notation arg min f{) denotes the argument
that minimizes the function f (a point in the domain of f), assuming such a point
is unique. For example, if f : R — R is given by f(z) = (z + 1)? + 3, then
argmin f(z} = —1. If we write argmin, o, then we treat ) as the domain of f.
For example, for the function f above, argmin, ., f(z) = 0. In general, we can
think of arg min_cq f() as the global minimizer of f over {} (assuming it exists
and is unique).
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Strictly speaking, an optimization problem is solved only when a global minimizer
is found. However, global minimizers are, in general, difficult to find. Therefore, in
practice, we often have to be satisfied with finding local minimizers.

6.2 CONDITiONS FOR LOCAL MINIMIZERS

In this section, we derive conditions for a point 2* to be a local minimizer. We use
derivatives of a function f : R* — R. Recall that the first-order derivative of f,

denoted D f, is
8f 8§ af
pfe L =L 2
f Oxy Bxy " T Oz, |

Note that the gradient V f is just the transpose of Df; thatis, Vf = (D). The
second derivative of f : B* — IR (also called the Hessian of f)is

a2 a*f
55%(5'3)  Gatbar(®)
F(z) 2 D*f(z) = : :
32 f‘ 2 !
Bz10z, (SB) T g_mg(a:)
Example 6.1 Let f(z1,22) = 5z + 822 + x122 — 23 — 222, Then,

Df{z) = (Vi(@)! = [g—i m),é%(m)} =[5 422 — 229,84+ 2y — 4],

and
Pl@) 2i(2) -
Fix) = D? = 352'31 3322335; _1-2 1
() f(x) 2L (@) %é(m) [ ) __4].
|

Given an optimization problem with constraint set £2, a minimizer may lie either in
the interior or on the boundary of §2. To study the case where it lies on the boundary,
we need the notion of feasible directions.

Definition 6.2 Feasible direction. A vectord € R®, d # 0, is a feasible direction
atx € Q if there exists ag > 0 such that 2 + ad € {2 for all & € [0, ao). ]

Figure 6.2 illustrates the notion of feasible directions.
Let f : B® — R be a real-valued function and let d be a feasible direction at
z € Q. The directional derivative of f in the direction d, denoted 8f/8d, is the
al-valued function defined by

08 )y Lo 00— 1(0)
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Figure6.1 Examplesof minimizers: @1: strict global minimizer; w2: strict local minimizer;
a3: local (not strict) minimizer

which includes the unconstrained case. In the remaining chapters of this part, we
deal with iterative algorithms for solving unconstrained optimization problems.

The constraint “@ € 07 is called a sef constraint. Often, the constraint set {2 takes
the form @ = {z : h(z) = 0, g(x) < 0}, where h and g are given functions.
We refer to such constraints as functional constraints. The remainder of this chapter
deals with general set constraints, including the special case where 3 = R". The
case where {3 = R® is called the unconstrained case. In Parts IIT and IV, we consider. -
constrained optimization problems with functional constraints. :

In considering the general optimization problem above, we distinguish between
two kinds of minimizers, as specified by the following definitions. '

Definition 6.1 Local minimizer. Suppose that f : R* — R is a real-valued function
defined on some set £ C R®. A point z* € §} is a local minimizer of f over {1 if
there exists & > 0 such that f(x) > f(z*) forallz € O\ {z*} and [|lz — z*|| < &..

Global minimizer. Apointz* € Qisa global minimizer of f over Qif f(z) > f (x*):
forallz € O\ {z*}. |

I, in the above definitions, we replace “>" with “>>”, then we have a strict local:
minimizer and a strict global minimizer, respectively. ‘

In Figure 6.1, we graphically illustrate the above definitions forn = 1.

Given a real-valued function f, the notation argmin f(z) denotes the argument_:
that minimizes the function f (a point in the domain of f), assuming such a point.
is unique. For example, if f : R = R is given by f(z) = (z + 1) + 3, the
argmin f(z) = —1. If we write argmin, .., then we treat §} as the domain of f..
For example, for the function f above, arg ming s, f(z) = 0. In general, we n
think of arg min,gp, f() as the global minimizer of f over {2 (assuming it ex:sts'f
and is unique).
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d,

Figure 6.2 Two-dimensional illustration of feasibie directions; d; is a feasible direction,
d is not 2 feasible direction

If ||dij = 1, then 8f/8d is the rate of increase of f at @ in the direction d. To
compute the above directional derivative, suppose that = and d are given. Then,

f(z + ad) is a function of ¢, and
af d
i) = — d
L) = i@ rad)
Applying the chain rule yields
af O (&)
od

Tn summary, if d is a unit vector, that is, ||d|| = 1, then (Vf (:c), d) is the rate of |
increase of f at the point @ in the direction d. s

= 3 jwrod) = Vi@ d=(Vi(@)d) = dVi@)

Example 6.2 Define f : R — Rby f(z) = 217273, and let

T
gofil L
2’2’ /2

The directional derivative of f in the direction d is

_ 1/2 _
a + /2 :
OF (2) = Vi(@)Td = [wams, 0103, m122] | 1/2 | = 2320 + 2175 + V20122

direction d.

We are now ready to state and prove the following theorem.

Theovem 6.1 First-Order Necessary Condition (FONC), Let 1 be a subset of R
and f € C! a real-valued functmn on 2. Ifx* is a local minimizer of f ove
for any feasible direction d at ", we have

dTVf(z*) >0
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Figure 6.2 Two-dimensional illustration of feasible directions; d; is a feasible direction,
d is not a feasible direction

If {|d]| = 1, then 8f/8d is the rate of increase of f at @ in the direction d. To
compute the above directional derivative, suppose that = and d are given. Then,

flx + ad) is a function of @, and
af d
at'(m) = g&f(m + Oéd) I .
Applying the chain rule yields
of
5d"”

Tn summary, if d is a unit vector, that is, [|d|| = 1, then (V f(z), d} is the rate of
increase of f at the point & in the direction d.

)= L@ rad| =Vi@d= (Vi@ d=dVi@).

Example 6.2 Define f : B* — R by f(z) = 12225, and let

a=[t L]
12727 V2
The directional derivative of f in the direction d is
1/2
. 2
«g—fl(m) =V f(x)'d = [ga23, mr23, 2122] | 1/2 | = i :1:1:3; + leaa_
1/v2
Note that because {jd|| = 1, the above is also the rate of increase of f at = in the

direction d.
We are now ready to state and prove the following theorem.

Theorem 6.1 First-Order Necessary Condition (FONC). Let () be a subset of R
and § € C* a real-valued functionon Q. If &* is a local minimizer of | aver §}, then
for any feasible direction d at ™, we have

dTVf(xz*) > 0.
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o

Proof. Define
z{a) =¥ + ad € .

Note that 2(0) = 2*. Define the composite function
Pla) = f(z(a)).

Then, by Taylor’s theorem,

f@™ + ad) - f(z%) = ¢(a) — $(0)

where ¢ > 0 (recall the definition of o(a) (“little-oh of o) in Part I). Thus, if
gb(a? > #(0), that is, f(z* + ad) > f(x*) for sufficiently small values of & > 0
(" is a local minimizer), then we have to have d7 V F{xz*) > 0 (see Exercise 5.7). B

¢' (0)ax + o(a) = ad” V f(2(0)) + o(a),

The above theorem is graphically iliustrated in Figure 6.3.
An alternative way to express the FONC is:

of
od
for all feasible directions d. In other words, if 2* is a local minimizer, then the rate of
increase of f at &* in any feasible direction d in {} is nonnegative. Using directional
derivatives, an alternative proof of Theorem 6.1 is as follows. Suppose that z* is a

local minimizer. Then, for any feasible direction d, there exists @ > 0 such that for
all e € (0,&),

(") >0

f2*) < flz" + ad).

Hence, for all & € {0, &), we have

f@* +ad) - f@)
2 >0,

- Taking the limit as o — 0, we conclude that

a .
— (™Y >
3 d(a: ) >0
A special case of interest is when ™ is an interior point of £ (see Section 4.4). In

'this case, any direction is feasible, and we have the following result.

Corollary 6.1 Interior case. Let (! be a subset of R* and f € C* a real-valued

J;i)t_nc;ion on L If ™ is a local minimizer of f over Q and if &* is an interior point of
AL then

V#(z*) = 0.
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Figure 6.3 Tlustration of the FONC for the constrained case; @ does not satisfy the FONC,
o satisfies the FONC

Proof Suppose that f has a local minimizer z* that is an interior point of £
Because 2* is an interior point of €2, the set of feasible directions at =* is the whole
of B*. Thus, for any d € R*, d? Vf(z*) > 0 and —d" Vf(z*) > 0. Hence,
dTV f(x*) = 0 for all d € R", which implies that V f(z*) = 0. o

Example 6.3 Consider the problem

minimize 7 + 0.523 + 333 + 4.5

&1, T2 2 0.

subject to

Questions:

a. Is the first-order necessary condition (FONC) for a local minimizer satisfied at’
x = [1,3]47

b. s the FONC for a local minimizer satisfied at 2 = [0,3]7?

¢. Ts the FONC for a local minimizer satisfied at @ = [1,0]¥?

d. Is the FONC for a local minimizer satisfied at z = [0,0]7?

Answers: First, let f : R — R be defined by f(z) = #% + 0.523 + 322 + 4.
where @ = [1,23]7. A plot of the level sets of f is shown in Figure 6.4. '

a. Atz = [1,3]7, we have Vf(2) = 231,22 + 37 = [2,6]%. Thep
x = [1,3]7 is an interior point of @ = {z : z1 > 0,3 > 0}. Hence, th
FONC requires V f(z) = 0. The pointz = [1, 3] does not satisfy the FON
for a local minimizer. :
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Figure 6.3 Tiustration of the FONC for the constrained case; 1 does not satisfy the FONC,
w; satisfies the FONC

Proof. Suppose that f has a local minimizer #* that is an interior point of {2.
Because " is an interior point of {2, the set of feasible directions at z* is the whole
of R*. Thus, for any d € R?, d¥Vf(z*) > 0 and ~d?Vf{x*) > 0. Hence.
dTV f{x*) = 0 for all d € R™, which implics that Vf(z*) = 0. |

Example 6.3 Consider the problem

z? + 0.522 + 3z2 + 4.5
Ty, T2 2 0.

minimize
subject to

Questions:

a. Is the first-order necessary condition (FONC) fora local minimmizer satisfied at
x = [1,3]7?

b. Is the FONC for a local minimizer satisfied at z = [0, 37

c. Is the FONC for a local minimizer satisfied at ¢ = [1,0]7?

d. Is the FONC for a local minimizer satisfied at 2 = [0,0]7?

Answers: First, let f : B — R be defined by f(x) = 2 + 0.5z3 + 3z2 + 4.5,
where z = [£1,z2]7. A plot of the level sets of f is shown in Figure 6.4.

(21,22 + 3] = [2,6]". The point

a. Atz = [1,3]F, we have Vf(z) =
{ : 1 > 0,33 > 0}. Hence, the

x = [1,3]7 is an interior point of Q =

FONC requires V f () = 0. The pointx = [1, 317 does not satisfy the FONC -

for a local minimizer.
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Figure 6.4 Level sets of the function in Example 6.3

b. Atz = [0,3]7, we have Vf(z) = [0,6]7, and hence d¥ V f () = 6d,, where
d = [C.fl,dng. For d to be feasible at &, we need d; > 0, and dy can take
an arbitrary value in R. The point & = [0,3]7 does not satisfy the FONC
for a minimizer because d; is allowed to be less than zero. For example
d = [1, —1]7 is a feasible direction, but d* Vf(z) = —6 < 0. ,

Atz = [1,0]7, we have V f(z) = [2,3]7, and hence d” V f(2) = 2d; + 3d..
For d to be feasible, we need dy > 0, and d; can take an arbitrary value in R.
For example, d = [~5,1]7 is a feasible direction. But d7V f(z) = —7 < 0
Thus, & = [1, 0] does not satisfy the FONC for a local minimizer. .

Atz = {0, Q]T, we have V f(x) = [0,3]7, and hence d¥ V f(z) = 3d,. For
d to be feasible, we need dz > O and d; > 0. Hence, » = [0, O}T satisfies the
FONC for a local minimizer.

C

9 E.xample 6.4 Figure 6.5 shows a simplified model of a cellular wireless system (the
- distances shown have been scaled down to make the calculations simpler). A mobile
- user (also called a “maobile”) is located at position z (see Figure 6.5). .

. There are two basestation antennas, one for the primary basestation and another
for the neighboring basestation. Both antennas are transmitting signals to the mobile
user,. at 'equal power. However, the power of the received signal as measured by the
: mobﬁe is the reciprocal of the squared distance from the associated antenna (primar
or ne;gh%?oring basestation). We are interested in finding the position of the mobiii
-_ :E:a:l Taxrmizes the signal-to-interference ratio, which is the ratio of the received
A égig; bgl(-)i\:grbiztsr:a:?:n?rlmary basestation to the received signal power from the
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Figure 6.5 Simplified cellular wireless system in Example 6.4

We use the FONC to solve this problem. The squared distance from the mobile
to the primary antenna is 1 + 22, while the squared distance from the mobile to the
neighboring antennais 1 + (2 - 2)2. Therefore, the signal-to-interference ratio is

12
fe) = e

We have
. o =2z(l+(2-a)?) —2(2 - z)(1 + %)
F'@) = 1+ (2= 2)?
4{z? -2z ~ 1)
1+ (2 —2)?

By the FONC, at the optimal position z*, we have f'(z*) = 0. Hence, either
2 =1-y2oz" =1+ +/2. Evaluating the objective function at these two
candidate points, if easy to see thatz* = 1 — \/ﬁ is the optimal position. gt

We now derive a second-order necessary condition that is satisfied by 2 local

minimizer.

Theorem 6.2 Second-Order Necessary Condition (SONC). Let ) C R, fe(? a
function on ), * a local minimizer of f over (1, and d a feasible direction at It

dTV f(z*) = 0, then
dTF{z*)d > 0,

where F is the Hessian of f.

Proof. We prove the result by contradiction. Suppose that there is a feasible directi

d at =* such that d” Vf{z*) = 0 and dTF(z*)d < 0. Let z(a) = =" + od and

define the composite function ¢(a) = f(z* + od) = f(z(a)). Then, by Tayloz’s

theorem ) .
o

#(a) = 6(0) + 9 (0) 5 + o),
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Figure 6.5 Simplified cellular wireless system in Example 6.4

We use the FONC to solve this problem. The squared distance from the mobile
to the primary antenna is 1 + z2, while the squared distance from the mobile to the
neighboring antenna is 1 + (2 ~ z)?. Therefore, the signal-to-interference ratio is

1+ z?
f@) = e

‘We have
, ~2z(1+ (2~ 2)%) — 2(2 — 2)(1 + ?)
e 14 (2 —a)?
AP -2 -1
i+ (2—ax)?

By the FONC, at the optimal position z*, we have f'(z*) == 0. Hence, either
2t = 1—+2orz* = 1+ /2 Evaluating the objective function at these two
candidate points, it easy to see thatz* =1 — /2 is the optimal position. |

We now derive a second-order necessary condition that is satisfied by a local
minimizer.

Theorem 6.2 Second-Order Necessary Condition (SONC). Let Q CR®, f € C?a
function on Q, &* a local minimizer of f over ), and d a feasible direction at x*. If
dYVf(xz*) =0, then

dTF(z")d > 0,
where F is the Hessian of f. o

Proof. We prove the result by contradiction. Suppose that there is a feasible direction
d at 2* such that dTVf(z*) = 0 and d¥ F(z*)d < 0. Let @(e) = o* + cd and
define the composite function ¢{a) = f{z* + ad) = f(z(x)). Then, by Taylor’s
theorem '

az
$lo) = $(0) + ¢"(0) 5 + o(a®),
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where by assumption ¢'(0) = d” V f(z*) = 0, and #"(0) = dTF(2*)d < 0. For
sufficiently small e,
U a2 v
Pla) - p(0) = ¢ )5 + ofe®) <0,

that is,
f&@* +ad) < fz*),

which contradicts the assumption that &* is a {ocal minimizer. Thus,

¢"(0) = d¥ F(z")d > 0.

Corollary 6.2 Interior Case. Let x* be an interior point of @ ¢ R™. Ifa* is a local
minimizer of f : 0 = R, f € C2, then

Vf(=z*) =0,

and F(z*) is positive semidefinite (F(2*) > 0); that is, for all d € R,

d*F(z*)d > 0.

a

Proof. If =* is an interior point then all directions are feasible. The result then
follows from Corollary 6.1 and Theorem 6.2. |

In the examples below, we show that the necessary conditions are not sufficient.

Efxample 6.5 Consider a function of one variable f(z) = z°, f : R — R Because
f{0) = 0, and f"(0) = 0, the point 2 = O satisfies both the FONC and SONC.
However, z = 0 is not a minimizer (see Figure 6.6). [ |

Exaryp]e 6.6 Consider a function f : R? — R, where f(z) = 2% — 3. The FONC
requires that V f(x) = [2zy, ~225]7 = 0. Thus, = = [0,0]7 satisfies the FONC.
The Hessian matrix of f is

2 0

F =

@) =1y ol
The Hessian matrix is indefinite; that is, for some d; € B2 we have &7 F'd; > 0
&g, dy = [1,0]T; and, for some d 4 = ,

8- 1 = [1,007; and, fc ome dg, we have d; Fdy < 0,e.g.,ds = [0,1]7. Thus,
x = [0,0] goes not satisfy the SONC, and hence it is not a minimizer. The graph
Of f(x} = 3 — ] is shown in Figure 6.7. n

We now derive sufficient conditions that imply that z* is a local minimizer,
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f(x)=x3

Figure 6.6 The point 0 satisfies the FONC and SONC, but is not a minimizer
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Figure 6.7 Graphof f(z) = z} — o3 The point 0 satisfies the FONC but not SONC; this
point is not a minimizer . N

Theorem 6.3 Second-Order Sufficient Condition (SOSC), Interior Case. Let f €
C? be defined on a region in which &* is an interior point. Suppose that e

1. Vf(z*) =0; and
2. F{x*) >0
Then, &* is a strict local minimizer of f.

Proof, Because f € CZ, we have F(z") = F T(x*). Using assumption 2 a“d
Rayleigh’s inequality it follows that if d # 0, then 0 < Amin(F(@*)| dH?_
d'F (a*)d. By Taylor’s theorem and assumption 1, .

fa +d) - 1@ = S P+ oflal) 2 2 EED P + o)
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Figure 6.7 Graph of f(z) = % — «2. The point 0 satisfies the FONC but not SONC; this
point is not a minimizer

Theorem 6.3 Second-Order Sufficient Condition ( SOSC), Interior Case. Let [ €
C2? be defined on a region in which " is an interior point. Suppose that

1. Vf(z*) =0; and

2. P{z*) >0

s 1
Then, 2* is a strict local minimizer of f.

Proof. Because f € C?, we have Flz*) = FT(x*). Using assumption 2 and.

* 2
Rayleigh’s inequality it follows that if d # 0, then 0 < Apin(F(z NhdlF <
d” F(x*)d. By Taylor’s theorem and assumption 1,

o+ d) = f(a) = LT E @+ o) 2 22 TE Dl + o).

EXERCISES

Q “‘ OO0
\\\\\\‘:\\‘{\\\\\ @"0’3 0

NRRRA )
R

Figure 6.8 Graph of f(z) = 2} + 23

Hence, for all d such that |jd|] is sufficiently small,

[ +d) > f(z*),
and the proof is completed. i
Example 6.7 Let f(z) = 2§ + 3. We have V f(z) = [2z;, 222])7 = 0 if and only
ifz =[0,0]7. Forall z € R?, we have

F(z) = [0 2} > 0.

The point & = {0,0]7 satisfies the FONC, SONC, and SOSC. It is a strict local
minimizer. Actually 2 = [0,0]7 is a strict global minimizer. Figure 6.8 shows the
graph of f(z) = z? + 3. [}

In this chapter, we presented a theoretical basis for the solution of nonlinear un-

- constrained problems. In the following chapters, we are concerned with iterative
- methods of solving such problems. Such methods are of great importance in prac-

tice. Indeed, suppose that one is confronted with a highly nonlinear function of 20

_'\_fariables. Then, the FONC requires the solution of 20 noniinear simultaneous equa-
. tions for 20 variables. These equations, being nonlinear, will normally have multiple

solutions. In addition, we would have to compute 210 second derivatives (provided

f € %) to use the SONC or SOSC. We begin our discussion of iterative methods in
the next chapter with search methods for functions of one variable.

EXERCISES

6.1 Consider the problem

minimize flx)




84 BASICS OF SET-CONSTRAINED AND UNCONSTRAINED OPTIMIZATION

subject to z €,

where f € C2. For each of the following specifications for Q, «*, and f, determine
if the given point 2" is: (i) definitely a local minimizer; (i) definitely not a local
minimizer; or (iii) possibly a local minimizer. Fully justify your answer.
a f B SR Q={z=m,lmn21ha = 11,217, and gradient
Vi) =[L1"
bh.f R 2RO={x= (@1, 20]" : @1 > Lwg 2 2}, &° = (1,217, and
gradient V f{z*) = [1,0]".
¢ [ RaRO={z= [21,22]T 1 31 2 0,22 > 0}, 2" = [1,2]7, gradient
V f(x*) = [0,0}7, and Hessian F'(z*) = I (identity matrix).
d f RBRaRO={z= (w1, 727 s 21 2 L2 2 2}, &% = [1,2]%, gradient
Vf(x*) = [1,0]%, and Hessian

Fz") = [{1) _?1] .

6.2 Show that if * is a global minimizer of f over 2, and &* € (¥ C Q, thenz™ is
a global minimizer of f over {0'.

6.3 Suppose that z* is a local minimizer of f over ), and Q C V. Show that if z*
is an interior point of (2, then =* is a local minimizer of f over {¥'. Show that the
same conclusion cannot be made if 2* is not an interior point of Q.

64 Let f:R* —» R o € R*,and Q C R, Show that

zo + argmin f(z) = argmin f(y),
oefd ye

where QU = {y 1y — zo € 0}

6.5 Consider the function f : k2 — R given below:
flz)= z” {}1 g} z+a’ [g] + 6.

a. Find the gradient and Hessian of f at the point 1, 1}7'.

b. Find the directionat derivative of f at [1,1}¥ with respect to a unit vector in
the direction of maximal rate of increase.

c. Find a point that satisfies the FONC (interior case) for f. Does this poii_l’t
satisfy the SONC (for a minimizer)?
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subject to z €,
6.6 Consider the function f : R? — R given below:

where f € (2. For each of the following specifications for 2, &*, and f, determine

if the given point &* is: (i) definitely a local minimizer; (ii) definitely not a local _

rinimizer; or (iii) possibly a local minimizer. Fully justify your answer. flx) =7 21 ? 24zl 3 47
: — 4 .

a f R R Q={z=|maz a2l = [1,217, and gradient
Vi) = [L1].

b. f : R‘z — R Q) == {a’} = [CC]_,E?]T Vi 2 1,2:2 Z 2}, x* = [132]T, and
gradient V f(z*) = [1,0)7.

e. R R Q= {z=[r,5)" 51 20,2220}, 2" = {1,2]7, gradient
Vf(z*) = [0,0]7, and Hessian F(x*} = I (identity matrix).

a. Find the directional derivative of f at [0,1]” in the direction [1, 0}

b. Find all points that satisfy the first-order necessary condition for f.

Does ' f have a minimizer? If it does, then find all minimizer(s); otherwise
explain why it does not.

6.7 Consider the problem
d f R SR O={z=[r,5] 5 >2Lz22ss" = [1,2]7, gradient

V f(z*) = {1,0]%, and Hessian minimize Tl

. subject to |za] < 2F
Flx™} = . x>0,
o where T1,29 € R

a. Df)qs t?m point [x} , $.1zT = {) satisfy the first-order necessary condition for a
minimizer? That is, if f is the objective function, is it true that d” ¥ £(0) > 0
for all feasible directions d at 4? -

6.2 Show thatif =* is a global minimizer of f over , and 2™ € O C (L then 2™ is
a global minimizer of f over {2'.

b. Is the point [z, 1] = 0 a local minimizer, a strict local minimizer, a local

6.3 Suppose that z* is a local minimizer of f over 1, and 2 C §¥'. Show thatif 2*
maximizer, a strict local maximizer, or none of the above?

is an interior point of (), then =* is a local minimizer of f over . Show that the
same conclusion cannot be made if z* is not an interior point of {2.

6.8 Consider the problem

6.4 Let f: R* - R, 20 € R, and 2 C R®. Show that
minimize f(z)

xo + argmin f{z) = argmin f{y),
ety subject to z el

wE E%4
where ];: ]R; — R is given by f(2) = 5z, with = = [21, 22T, and @ = {z =
[1171,.372] :@f+x2 > 1}. Answer each of the following questions, showing complete
Justification. '

where ¥ = {y 1y — @o € 1}

6.5 Consider the function f : R* — R given below:

a. Does the point z* = [0,1]7 satisfy the first-order necessary condition?

12 x+x’ 3 + 6.

fay=2"14 7 5

b. Does the point =* = [0, 1]7 satisfy the second-order necessary condition?

a. Find the gradient and Hessian of f at the point [1, 17, ¢. Is the point &* = [0, 1]7 a local minimizer?

b. Find the directional derivative of f at [1,1]7 with respect to a unit vector in

the direction of maximal rate of increase. - ‘_3-9 Counsider the problem
minimize fl=)

subject to x €,

c. Find a point that satisfies the FONC (interior case) for f. Does this point
satisfy the SONC (for a minimizer)?
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Problems with Equality
Constraints

L
‘>€c .

19.1 INTRODUCTION

In this part, we discuss methods for solving a class of nonlinear constrained opti-
‘mization problems that can be formulated as:

minimize f{x)
subject to hi(x) =0, i=
9;(®) <0, j=

'._th'erem eRN IR R LR R g R 2R andm < n Invector
 fiotation, the problem above can be represented in the following standard form:

minimize f=x)
subject to hiz)=10
g(x) <0,

-Whé_re h:R* = ™, and g : B* — BP. As usual, we adopt the following
ferminology.

'Deﬁ__l'l'ition 19.1 Any point satisfying the constraints is called a feasible point. The
set of all feasible points

{x € R : h(z) =0,g(x) < 0}

i
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Optimization problems of the above form are not new to us. Indeed, linear
programming problems of the form

minimize ¢tz
gubject to Ar=2»b
x>0,

which we studied in Part IIi, are of this type.

As we remarked in Part II, there is no loss of generality by considering only
minimization problems. For if we are confronted with a maximization problem, it
can be easily transformed into the minimization problem by observing that

maximize f(x) = minimize — f(z).

We illustrate the problems we study in this part by considering the following

simple numerical example.

Example 19.1

minimize (g1 —1)*+2p -2
subject to Ty — 21 =1,
2y + xz2 < 2

This problem is already in the standard form given earlier, with f(z1,22) = (21 —
1)% 4+ 2 ~ 2, bz, 22) = 33 — 21 — 1, and g(z1,22) = T1 + 22 — 2. This problem
turns out to be simple enough to be solved graphically (see Figure 19.1). In the
figure the set of points that satisfy the constraints (the feasible set) is marked by the
heavy solid line. The inverted parabolas represent level sets of the objective function
f—ithe lower the level set, the smaller the objective function value, Therefore, the
solution can be obtained by finding the lowest level set that intersects the feasible set.
In this case, the minimizer lies on the level set with f = —1/4. The minimizer of

the objective function is * == {1/2,3/ 2]T. . |

In the remainder of this chapter, we discuss constrained optimization prob!ems -
with only equality constraints. The general constrained optimization problem is' "
discussed in the chapters to follow. S

19.2 PROBLEM FORMULATION

The class of optimization problems we analyze in this chapter is

minirnize flx)
subject to hiz} =0,

wherez € R, f:R* S R A:R* - R™ h = [f1y. ., hm]T, and m < 1. W
assume that the function h is continuously differentiable, thatis, h € C oo
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Optimization problems of the above form are not new to us. Indeed, linear g
programming problems of the form :

minimize

subject to

which we studied in Part IT1, are of this type.

As we remarked in Part II, there is no loss of generality by considering only -
minimization problems. For if we are confronted with a maximization problem, it -
can be easily transformed into the minimization problem by cbserving that

maximize f{x} = minimize ~ f(z).

We illustrate the problems we study in this part by considering the following
simple numerical example. B

Example 19.1

mimmize (g — 1) + 23— 2 Figure 19.1 Graphical solution to the problem in Example 19.1
subject to Ty~ T = 1,
T +xp < 2. We introduce the following definition.

* Definition 19.2 A point z* satisfying the constraints hy(x*} = 0,..., hn(z*) =
"0 is said to be a regular point of the constraints if the gradient vectors
Vhi{x*), ..., Vhg{z*) are linearly independent. - |

This problem is already in the standard form given earlier, with f(z1,22) = (2 '
1)2 425 — 2, {1, %2) = &9 — 21 — 1, and g(21, T2) = %1 + 3 ~ 2. This problem
turns out to be simple enough to be solved graphically (see Figure 19.1). In thc-
figure the set of points that satisfy the constraints (the feasible set) is marked by the
heavy solid line. The inverted parabolas represent level sets of the objective function

Let Dh(z*) be the Jacobian matrix of h = [hy, ..., hn]T atz*, given by

f—the lower the level set, the smaller the objective function value. Therefore, the- Dhy(z") Vhy (2)T
solution can be obtained by finding the lowest level set that intersects the feasible se Dh(z*) = : = : .
In this case, the minimizer lies on the Ievel set with f = —1/4. The minimizer of Dh '( =) Th iw*)q’

: e T

the objective function is 2* = [1/2,3/2]". _
Then, =* is regular if and only if rank Dh(2*) = m, that is, the Jacobian matrix is
of full rank.

" The set of equality constraints hy{x) = 0,...,hyn(xz) = 0, by : R* = R,
describes a surface '

S={zeR" : hlx)=0,...,hn(z) =0}

‘Assuming the points in S are regular, the dimension of the surface 5 isn - m.

In the remainder of this chapter, we discuss constrained optimization probler :
with only equality constraints. The general constrained optimization problem i
discussed in the chapters to follow.

19.2 PROBLEM FORMULATION

Example 19.2 Letn = 3 and m = 1 (i.e., we are operating in R*). Assuming that

The class of optimization problems we analyze in this chapter is oaimple _ : _
_a_ll points in S are regular, the set S is a two-dimensional surface. For example, let

minimize fl=x)
subject to h(z) =0,

wherez € R, f R* S R AR 5 B, h = [hy,...,hn} ., andm <0 W
assume that the function A is continuously differentiable, that is, b € C L

hg_(.’B) = X9 -—ch =z ).

_Qte that Vhy (z) = [0, 1, —223]7, and hence for any & € R, Vhy(z) # 0. In this

dim § = dim{z: hi(@) =0} =n —m = 2,




