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Abstract

In as elementary a way as possible, we place Wiles’ proof of Fermat’s last theorem into the context
of a general description of reciprocity conjectured to obtain between algebraic varieties defined over Q
and Hecke eigenvectors in the homology of the spaces of lattices in Rn.

We shall find the Cube of the Rainbow,
Of that, there is no doubt.
But the Arc of a Lover’s conjecture
Eludes the finding out.

Emily Dickinson

During the last few decades, the field of number theory has been increasingly
permeated by the theory of automorphic forms and automorphic representations.
This phenomenon often goes under the rubric of the ‘Langlands program’, although
it involves the work of many mathematicians, including R. Langlands, J.-P. Serre
and G. Shimura, to name only three. Recently, this program became especially
prominent because it forms a background to Wiles’ proof of Fermat’s last theorem.

As explained by Langlands in [14], parts of this program can be viewed as a
vast generalization of reciprocity laws familiar in number theory, such as quadratic
and Artin reciprocity. Some of the ultimate conjectures along these lines are spelled
out in Clozel’s article [4], linking motives and automorphic representations; see also
Gelbart [11].

Both of the italicized terms in the previous sentence are rather technical objects.
Our goal in this article is to describe a version of these generalized non-abelian
reciprocity conjectures: a version accessible to a reader who knows nothing beyond
basic algebra and the definition of homology groups. Because of these self-imposed
limitations, we shall be unable to state the conjectures in their full strength or with
total precision. To compensate for these necessary shortcomings, we have included
three basic examples that should give the flavour of the conjectures. The first
involves quadratic reciprocity, the second a modular elliptic curve, and the third a
(probably) automorphic algebraic surface. Moreover, the conjecture that we do state
is strong enough to allow its application to Fermat’s last theorem. At the appropriate
place, we shall discuss the term ‘reciprocity’ and what may be thought of as being
reciprocated.

By reducing the prerequisites, we hope to increase the number of readers who
can obtain some glimpses of this beautiful landscape of generalized reciprocity. We
also believe that the formulation of the conjectures in terms of spaces of lattices
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in Rn has a certain surprising beauty of its own. We should point out, however,
that it is very unlikely that progress can be made in proving the conjectures on this
elementary level.

We begin with a quick review of Wiles’ proof of Fermat’s last theorem. For a good
survey of this together with references to the work of Wiles and his predecessors
necessary to the proof, see [15].

Let n be a prime greater than 3, and suppose that (a, b, c) ∈ Z3 is a non-trivial
solution of the Fermat equation an + bn = cn. It was noticed that one could take
these three integers and use them to define a particular elliptic curve E,

y2 = x(x− an)(x+ bn),

where we think of E as lying in the xy-plane.
Elliptic curves have been the object of intense study for much of this century,

though many things about them remain unknown. One particular property of elliptic
curves is that they can be modular. We shall give below a definition of modularity
from our point of view that is equivalent to the standard one. Wiles proved that this
particular elliptic curve is modular; Ribet had earlier proved that E is not modular.
Therefore it cannot exist, so a, b and c cannot exist either.

The work of Wiles [23], Taylor and Wiles [21], Diamond [7], and Conrad,
Diamond and Taylor [5] shows that elliptic curves in a rather large class are modular.
Just recently, Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor
have announced a proof of the modularity conjecture [6], which asserts that every
elliptic curve defined over Q is modular.

This conjecture is part of a vast program which sets up a conjectural correspon-
dence between two large sets. On one side of the correspondence, roughly speaking,
is the collection of systems of simultaneous polynomial equations with rational
coefficients. A member of this collection is called a ‘variety defined over Q’, and is
relatively simple to comprehend. (More precisely, this side of the correspondence
contains motives, which we shall discuss below.) For example, elliptic curves defined
over Q are varieties, because they can be described in general by an equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the ai are integers, and the discriminant ∆ of the elliptic curve, which is a
polynomial function of the numbers ai, is non-zero. Points on the curve over the
ring R are simply solutions (x, y) ∈ R2 to the given equation.

The formula for the discriminant is quite complex, and may be found in [19,
p. 46]; if we restrict to the simpler family of curves given by the equation

y2 = x3 + Ax+ B,

then ∆ = −16(4A3 + 27B2). Except for a constant factor, this is the same as the
discriminant of the cubic polynomial x3 +Ax+B. For future reference, we mention
a more subtle number N called the conductor, which consists of a product of the
primes dividing ∆ raised to certain powers.

The other side of the correspondence is harder to grasp; it consists of certain
automorphic representations of reductive groups defined over Q. (Linking these two
collections is something even harder to get an elementary handle on: representations
of Gal(Q/Q), which we shall discuss further in the Appendix.) To simplify our
exposition, in this article we shall consider only a certain subset of automorphic rep-
resentations: those which are ‘geometric’ for GL(n) with constant coefficients. This
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particular subset is still rich enough to allow us to define the concept of modularity
for elliptic curves. This narrowing of scope allows us to replace automorphic rep-
resentations by simpler equivalent objects, called H-eigenelements, to be explained
below. We denote by α an element of this collection.

The first side of the correspondence will now consist of a more narrowly defined
collection of varieties that will still include elliptic curves. We shall denote such a
variety by V . Our subprogram of the general reciprocity program is the following
correspondence:(

certain varieties (including
elliptic curves) defined over Q

)
!

(
H-eigenelements

)
V ←→ α.

We need to explain more precisely the terms and nature of this correspondence.
First, the left-hand side: by multiplying through by the common denominator of all
fractions used to define the variety V , we may assume that in fact the equations used
to define V have coefficients in Z rather than in Q. If R is any ring, we can then use
V (R) to mean the solutions to the equations which are in R. In other words, if V is
defined by polynomials {gi(x1, . . . , xm) = 0, i = 1, . . . , n}, then

V (R) = {(a1, . . . , am) ∈ Rm | gi(a1, . . . , am) = 0 for i = 1, . . . , n}.
In particular, we can take R to be Fpm , the field of pm elements, where p is any

prime and m is any positive integer. Because the field is finite, we obtain a set of
integers #V (Fpm) for primes p and positive integers m. These integers are encoded
in the Hasse–Weil zeta function of V as described below.

Unfortunately, making precise which equivalence classes of varieties are con-
sidered on the left-hand side of this correspondence is quite complex. In fact, we
actually need ‘pieces’ of varieties, or, more precisely, ‘pieces’ of their cohomology,
called motives. When the cohomology of a variety V breaks up into a number of
motives, all of which except one are easily understood, then V as a whole can stand
in for its non-trivial motivic piece in the formulas that give a description of the
correspondence V ↔ α. This is what happens in the three examples discussed in this
paper. Therefore, the first-time reader might wish to skim this ad hoc introduction
to motives. Advanced readers may consult [12] for more information about motives.

A motive is a piece of the cohomology of a variety defined over Q. Just like
the complex cohomology of a complex variety, motives have Hodge types, to which
we shall need to refer for the sake of accurately stating the conjectures below. One
projective variety V can ‘contain’ many motives, and one motive can appear in
various different varieties. A motive M gives rise to an L-function L(M, t) with an
Euler product

L(M, t) = L∞(M, t)
∏
p

Lp(M, t),

where p runs over all prime numbers. If the variety V yields the set of motives {Mi},
then ∏

i

L(Mi, t)
εi = Z(V , t) = Z∞(V , t)

∏
p

Zp(V , t),

where Z(V , t) is the Hasse–Weil zeta function of V , and εi is −1 or 1 depending on
whether Mi appears in an odd- or even-degree cohomology group of V . The local
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factor Zp(V , t) is defined by

Zp(V , t) = exp

( ∞∑
m=1

#V (Fpm)

m
tm

)
.

In fact, we even have the local factorization

Zp(V , t) =
∏
i

Lp(Mi, t)
εi

for each prime p.
An example could not but help to clarify these concepts. Consider the variety

V = P2, defined over Q. We can think of P2 as the disjoint union A0 q A1 q A2.
Therefore #P2(Fpm ) = 1 + pm + p2m. We have

logZp(V , t) =

∞∑
m=1

1 + pm + p2m

m
tm

=

∞∑
m=1

[
tm

m
+

(pt)m

m
+

(p2t)m

m

]
= − (log(1− t) + log(1− pt) + log(1− p2t)

)
,

so

Zp(V , t) =
1

(1− t)(1− pt)(1− p2t)
.

It is traditional to substitute t = p−s, and view s as a complex variable. We then
have

Zp(V , p
−s) =

(
(1− p−s)(1− p1−s)(1− p2−s)

)−1
,

and therefore ∏
p

Zp(V , p
−s) = ζ(s) ζ(s− 1) ζ(s− 2).

In this case, the three motives corresponding to V are exactly Hi(V ) for i = 0, 2, 4
and L(Mi, p

−s) = ζ(s− i/2).
In general, for any smooth projective variety V defined by equations with integral

coefficients, and for almost all primes p, Zp(V , t) is a rational function with

Zp(V , t) =
P1,p(t)P3,p(t) · · ·
P0,p(t)P2,p(t) · · ·

with the factorization

Pi,p(t) =
∏
r

(1− β(p)
r,i t).

Let V = V (Fp). Then the Frobenius element φp acts on the étale cohomology of V ,

with β(p)
r,i the reciprocal eigenvalues of φp. We have |β(p)

r,i | = pi/2. Finally,

#V (Fpm ) =
∑
r,i

(−1)i(β(p)
r,i )m.

Now, a motive M corresponds first to a choice of a single index i and a positive
integer n, and then for each prime p to a choice of a subset Sp of {β(p)

r,i } of cardinality
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n such that Sp is the set of reciprocal eigenvalues of φp acting on a ‘geometrically
defined piece’ of the étale cohomology of V . For example, the ‘piece’ might be all
of Hi(V ). See the discussion of [10] later in this paper for an example of a motive
that is not all of Hi(V ).

We can now define the L-function of a motive M by setting

Lp(M, s) =
∏
β∈Sp

(1− βp−s)−1, for almost all p.

Note the customary change of variable from t to s. We omit the definitions for ‘bad’
primes and for L∞, but we mention that L∞(M, s) depends on the Hodge type of M.
Then

L(M, s) = L∞(M, s)
∏
p

Lp(M, s).

Now we can say that the left-hand side of the correspondence consists of motives
of dimension n with Hodge type (n− 1, 0)⊕ (n− 2, 1)⊕ · · · ⊕ (0, n− 1).

On the right-hand side of the correspondence, H will denote a ring of oper-
ators acting on certain homology groups, and this action has eigenelements. The
eigenvalues of the operators in H acting on α will also be a set of numbers, and
the reciprocity conjecture specifies a relationship between these eigenvalues and
the numbers #V (Fpm). These relationships are given precisely by an equality of
L-functions; but first we have to define the α and their L-functions.

What are these mysterious H-eigenelements? We begin with a review of a
common definition.

Definition. A lattice Λ ⊂ Rn is a free abelian group generated by a basis of Rn.

Our next definition is less common, but also simple to comprehend.

Definition. A level N structure on an n-dimensional lattice Λ is a group
isomorphism φ : Λ/NΛ→ (Z/NZ)n.

We could consider the collection of all lattices in Rn with level N structure, but
that turns out to be too large a class. Instead, we consider two such lattices to be
equivalent if one can be obtained from the other by proper Euclidean motion (that
is, an orthogonal transformation of determinant 1), and positive homothety (change
of scale), where we always view Rn as endowed with its usual Euclidean structure.

Definition. Ln(N) = {(lattice Λ ⊂ Rn, level N structure φ)} /〈proper
Euclidean motion, positive homotheties〉.

Before we consider a few examples, we put a topology on our set Ln(N). Given
(Λ, φ) ∈ Ln(N), fix a basis for Λ, and then consider nearby points to be those lattices
obtained by small perturbations of the basis in Rn, keeping the level N structure
φ the same. These spaces of lattices come into the game because they are locally
symmetric spaces on which automorphic forms naturally live.

The simplest example is L1(1). Because our lattices are equivalent up to homo-
thety, we can take a basis of our lattice Λ to be 1. A level 1 structure would be
an isomorphism from Λ/Λ to Z/Z, and since each group contains only the identity
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element, there can be only one such isomorphism. Therefore L1(1) consists of a
single point.

A more enlightening example is given by L1(N). Again, there is only one lattice
Λ up to homothety, so we can take Λ = Z. Our level N structure is an isomorphism
φ : Z/NZ→ Z/NZ. Such a map is defined by φ(1), and since φ must be invertible,
φ(1) must be invertible, and hence it is in (Z/NZ)∗. Therefore L1(N) ∼= (Z/NZ)∗.

In order to see how Ln(N) can contain more interesting geometric information,
we consider one more example: L2(1). We start with a two-dimensional lattice Λ.
We take a vector of minimal length in Λ, and by means of rotations and stretching,
we can take that vector to be (1, 0). We are free to take any linearly independent
vector in Λ as the second basis vector. Take any such vector (x, y), where we may
suppose that x 6= 0 and y > 0. By adding multiples of (1, 0) to this vector, we may
suppose that − 1

2
6 x 6 1

2
. Since this vector must have length at least as large as

(1, 0), we also know that x2 + y2 > 1.
Furthermore, there are two identifications that we can make. Clearly, (− 1

2
, y)

is equivalent to ( 1
2
, y). Less obviously, there is another identification: if the second

chosen basis vector (x, y) has length 1, then we can rotate this vector to (1, 0),
and the vector formerly at (1, 0) will rotate to (x,−y). After we multiply by −1 to
obtain a positive second coordinate, we see that (x, y) is equivalent to (−x, y) when
x2 + y2 = 1.

After making these identifications, our space of lattices is topologically equivalent
to a sphere with one point removed. In fact, taking the strip{

(x, y) ∈ R2 | − 1
2
6 x 6 1

2
, x2 + y2 > 1, y > 0

}
,

and identifying the left and right vertical edges, gives a cylinder. Then glueing
(x, y) to (−x, y) for those points (x, y) with x2 + y2 = 1 collapses the circle at the
bottom of the cylinder to an arc. Topologically, we now have an open cup, which is
homeomorphic to a sphere minus a point. (A more detailed discussion can be found
in many places in the literature; see, for example, [16, Chapter VII.1] for a different
explanation and a picture.) As before, the level 1 structure does not add any further
detail, since φ will be a map from the trivial group to the trivial group.

Although the general picture is obviously much more complex, certain features
of this situation will remain true. For all n > 1, N > 1, Ln(N) will be a ‘nice’
topological space with #(Z/NZ)∗ components, classified by detφ. The situation for
n = 2 is especially favourable: L2(N) is the disjoint union of Riemann surfaces, and
can be defined by equations with Q-coefficients. There are formulas for the genus of
L2(N); see [18, Chapter 1]. If n > 3, then Ln(N) is not an algebro-geometric space,
but only a V -manifold (a manifold if N > 3).

We next consider the homology of these spaces: Hd(Ln(N),C), which is the
group of d-dimensional cycles modulo d-dimensional boundaries. This is always a
finite-dimensional vector space.

There is extra structure given by the action of the Hecke algebra H, defined as
follows. Let p be any prime not dividing N, and let k be any integer between 0
and n, inclusive. We can then define

T (k)
p : Ln(N) −→ Ln(N)

(Λ, φ) 7−→ {(Λ′, ψ) | Λ′ ⊂ Λ, Λ/Λ′ ∼= (Z/pZ)k, ψ = φ|Λ′ }.
There are several observations to be made about these operators T (k)

p .
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(1) Because p - N, ψ is again a level N structure.

(2) T (k)
p is not a function, but rather a one-to-many map. In fact, the image of

(Λ, φ) is finite, and the cardinality is given by the number of k-planes in
(Z/pZ)n.

(3) The action on the homology groups is, in fact, a function. In fact, T (k)
p maps a

cycle to the union of all of its images, but that union is again a cycle. Therefore
we do have a well-defined function T (k)

p : Hd(Ln(N),C)→ Hd(Ln(N),C).

(4) These functions T (k)
p all commute. Therefore there are simultaneous eigen-

classes α. If we write T (k)
p (α) = a(k)

p α, then one can prove that these numbers

a(k)
p are algebraic integers. For a fixed α, they in fact generate a finite-degree

extension of Q.

(5) If N|N ′ and α ∈ Hd(Ln(N),C) is an H-eigenelement, then there always exists
α′ ∈ Hd(Ln(N

′),C), an H-eigenelement with eigenvalues equal to those of α for
those primes p not dividing N ′.

(6) In principle, these eigenclasses α and numbers a(k)
p are computable. For n = 1

and any N, the computation is easy. For n = 2 and relatively small N, the
computation is not impossible; there is much help coming from the theory of
modular forms and elliptic curves. For n = 3 and relatively small N, a computer
can provide the answers [1]. For n = 4 and very small N, there is some research
in progress by the first author, Paul Gunnells and Mark McConnell.

In theory, whenever one can obtain a correspondence between a variety V (really
a motive M) and such an α, there is information to be gained. Such correspondences
are ‘generalized reciprocity laws’, so called because quadratic reciprocity can be
interpreted as such a correspondence, as we shall see shortly.

The term ‘reciprocity’ seems to go back to Legendre, as quoted on p. 328 of [22].
Originally, the term referred to reciprocity between two primes p and q: whether or
not p was a square modulo q being determined according to a simple rule depending
on whether or not q was a square modulo p. Eventually, this was interpreted as a
property of φp, the Frobenius element at p, restricted to the Galois group of Q(

√±q )
over Q, and vice versa. Later, the term ‘reciprocity’ was extended to a variety of
rules that told how φp acted in various situations; see [24] for a good introduction.
An early example of a non-abelian reciprocity law was given by Shimura [17]. Its
modern use is explained by Langlands [14, pp. 408–409] as including assertions ‘that
an L-function defined by diophantine data, that is, by an algebraic variety over
a number field, is equal to an L-function defined by analytic data, that is, by an
automorphic form’. See also Tate’s article [20] in the same volume, and the Appendix
below, for some examples of what kind of concrete information a reciprocity law
can provide.

We can now offer a precise conjecture. An H-eigenvector corresponds to a motive
as follows. We can define an L-function corresponding to the H-eigenelement α by
defining

Lp(α, s) = 1− a(1)
p p
−s + a(2)

p p
1−s − a(3)

p p
3−s + · · ·+ (−1)na(n)

p p
1
2 n(n−1)−s

for almost all p (that is, for those finite primes p not dividing the level N), with
other factors for primes dividing N and for ∞, and then define

L(α, s) = L∞(α, s)
∏
p

Lp(α, s).
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Conjecturally, α corresponds to a motive M in the sense that L(α, s) = L(M, s). More
precisely, we have the following.

Conjecture. (i) Given an absolutely irreducible motive M of dimension n with
Hodge type (n−1, 0)⊕ (n−2, 1)⊕· · ·⊕ (0, n−1) with conductor N, there is a cuspidal
H-eigenclass α ∈ H∗(Ln(N),C) such that L(α, s) = L(M, s).

(ii) Given a cuspidal H-eigenclass α ∈ H∗(Ln(N),C), there is a motive M of dimen-
sion n and conductor N and Hodge type (n − 1, 0) ⊕ (n − 2, 1) ⊕ · · · ⊕ (0, n − 1) such
that L(α, s) = L(M, s).

We make some observations.
(1) Part (i) is Question 4.16 in [4], and part (ii) is Conjecture 4.5 in [4]. We

have restricted each of Clozel’s formulations to the case of a trivial coefficient
module for the homology of Ln(N).

(2) Other Hodge types occur if we allow the cohomology of Ln(N) with non-trivial
coefficient modules.

(3) The conductor N of a motive M is a well-defined attribute of M, independent
of the Conjecture.

(4) ‘Cuspidal’ is a technical term whose definition is beyond the scope of this
paper. Roughly speaking, an H-eigenclass α ∈ H∗(Ln(N),C) is cuspidal if it
cannot be ‘induced’ from any space of lattices in Rm for m < n. If n = 2 or 3,
then the concept simplifies: α is non-cuspidal if for any compact subset K of
Ln(N), α is homologous to a cycle supported outside K . If α is cuspidal, then
it is known that L(α, s) has an analytic continuation to the entire s-plane, and
therefore the Conjecture implies that L(M, s) also has an analytic continuation.

(5) The equality of L-functions is equivalent to the equality of the local factors:
Lp(α, s) = Lp(M, s) for all p, and L∞(α, s) = L∞(M, s).

(6) In part (ii), M need not be absolutely irreducible; for example, α ∈ H1(L2(N),C)
could be associated to an elliptic curve with complex multiplication.

Let us return to our example of L1(N), and show how we can use the Con-
jecture to deduce quadratic reciprocity. The group H0(L1(N),C) is isomorphic to
H0((Z/NZ)∗,C), and this homology group consists of cycles ζf =

∑
f(x)x for

functions f : (Z/NZ)∗ → C. Let us work out how the operator T (1)
p behaves.

Because we are free to scale our lattice by a scalar, we can take Λ to be Z, with
distinguished generator g = 1 (although, for clarity, we shall continue to write g).
The level N structure φ is determined by φ(g) = a ∈ (Z/NZ)∗.

We know that T (1)
p (Λ, φ) must be the pair (pΛ, φ|pΛ) = (Λ′, ψ). Since Λ′ has

distinguished generator pg, we have ψ(pg) = pψ(g) = pa, so

T (1)
p ζf =

∑
f(x)px =

∑
f(p−1x)x,

where p−1 is the inverse of p modulo N. Therefore (T (1)
p f)(x) = f(p−1x).

Suppose that α is a simultaneous eigenelement for T (1)
p for all p not dividing N.

We may scale α so that α(1) = 1. We know that (T (1)
p α)(x) = α(p−1x), and we

also have (T (1)
p α)(x) = apα(x) (we need not write a(1)

p , since this example is one-

dimensional). Therefore α(p−1x) = apα(x). Set x = 1, and we have α(p−1) = ap. Now
set x = p, and we have α(p) = a−1

p . We can now use induction to conclude that

α(pk) = a−kp . This formula holds for the image of any prime p in (Z/NZ)∗, which
implies that α(xy) = α(x)α(y). In other words, the eigenelement α is a character
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of (Z/NZ)∗, and the eigenvalue ap is α(p−1). Notice that the eigenfunction α also
determines the eigenvalue ap.

Let us move now to the other side of the correspondence. Take any non-zero
integer W , and let V be the variety defined by the equation x2 − W = 0. We
compute the Hasse–Weil L-function Zp(V , t) for primes p - W . If the quadratic
residue symbol

(
W
p

)
= 1, then #V (Fpm) = 2 for all positive integers m. Therefore

Zp(V , t) = exp

( ∞∑
m=1

2

m
tm

)
= exp

(
2(− log(1− t)))

=
1

(1− t)2

=
1

(1− t)
(

1− (W
p

)
t
) .

If
(
W
p

)
= −1, then #V (Fp2m ) = 2 and #V (Fp2m+1 ) = 0. Therefore

Zp(V , t) = exp

( ∞∑
m=1

2

2m
t2m

)

= exp

( ∞∑
m=1

(t2)m

m

)
= exp

(− log(1− t2)
)

=
1

1− t2
=

1

(1− t)
(

1− (W
p

)
t
) .

We now have ∏
p

Zp(V , p
−s) = ζ(s)L(χ, s),

where L(χ, s) is the Dirichlet L-series defined by the function χ(p) =
(
W
p

)
.

The ‘interesting’ part of the cohomology of V corresponds to the L-series L(χ, s),
and this is the finite part of the L-series of the motive M that we study. Precisely,
for each p of good reduction, we must make a choice Sp of a subset of

{
1,
(
W
p

)}
,

and we select Sp =
{(

W
p

)}
. The conductor N of the variety M is a divisor of 4W .

(In fact, it might be considerably less than 4|W |, since we have not as yet asked that
W be square-free; in addition, if W ≡ 1 (mod 4), then the factor 4 is unnecessary.)
The Conjecture tells us that there is an eigenelement α ∈ H0((Z/4WZ)∗,C) such
that α(p) =

(
W
p

)
. (This is where the fact that the eigenelement α also determines

the eigenvalue ap comes into play, along with the helpful observation that we can
ignore the exponent of −1 in our formulas for α(p) because −1−1 = −1. We have
also used the fifth observation following the definition of T (k)

p , with N ′ = 4|W |.)
Suppose initially that W = −1. Since α can be thought of as a character on

(Z/4Z)∗, we can conclude that
(−1
p

)
is defined by the residue class of p (mod 4).

Since
(−1

3

)
= −1 and

(−1
5

)
= 1, we have deduced the usual formula for

(−1
p

)
.
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Next take W = 2, and we now have that α is defined (mod 8). Computation of(
2
p

)
for p = 3, 5, 7 and 17 gives the usual formula for

(
2
p

)
.

Next suppose that p ≡ q (mod 4), with p > q, and let W = (p − q)/4. Then
p ≡ q (mod 4W ), which means that α(p) = α(q), or

(
W
p

)
=
(
W
q

)
. We have(

p
q

)
=
(

4W+q
q

)
=
(

4W
q

)
=
(
W
q

)
=
(
W
p

)
=
(

4W
p

)
=
(
p−q
p

)
=
(−q
p

)
=
(−1
p

)(
q
p

)
,

which implies most of the usual formula for quadratic reciprocity.

To derive the remaining case, observe that the congruence

x2 −W ≡ 0 (mod 4W − 1)

always has the solution x ≡ 2W . This tells us that if W is positive and p is any
prime dividing 4W − 1, then α(p) = 1, so α(4W − 1) = 1.

Now suppose that p + q ≡ 0 (mod 4), and let W = (p + q)/4. Our preceding
observation implies that α(p) = α(q), which in turn implies that

(
W
p

)
=
(
W
q

)
, and,

reasoning as before, we can conclude that
(
p
q

)
=
(
q
p

)
.

We next take a more complex example, to explain (finally!) what it means for
an elliptic curve to be modular. For instance, we shall consider the curve

E : y2 + y = x3 − x2

with discriminant ∆ = −11 and conductor N = 11. For any elliptic curve V given
by a non-singular cubic equation in the plane, we write V̂ for the complete curve,
that is, V ∪ {∞}. We count the number of solutions of this equation modulo p for
various primes p 6= 11, and add 1 for the ‘point at ∞’, to obtain #V̂ (Fp).

For any elliptic curve V defined over Q, set #V̂ (Fp) = 1 + p− ap. It is plausible,
though not obvious, that one might want to write the number of solutions in this
way: for roughly half of the p possible values of x, one expects the left-hand side
to have a solution, but in those cases, one can expect there to be 2 solutions, since
y2 + y is a quadratic polynomial. Therefore one expects roughly p solutions to the
congruence, plus an additional solution for the point at infinity, and then we can
consider ap to measure how far the actual number of solutions deviates from the
expected number.

We can also motivate the expression 1− ap + p by thinking in terms of motives.

The elliptic curve V affords the motives H0(V̂ ), H1(V̂ ) and H2(V̂ ). The motives
in dimensions 0 and 2 are essentially trivial, and contribute 1 and p, respectively
(via the same analysis that gives the formula #P1(Fpm ) = 1 + pm). The number ap
corresponds to the non-trivial motive in dimension 1.

The statement that an elliptic curve V of conductor N is ‘modular’ is equivalent
to the fact that there is an eigenclass α ∈ H1(L2(N),C) such that

T (1)
p (α) = apα, p - N.

If you know the usual definition of ‘modular elliptic curve’, then you can see this as
follows. The set H1(L2(N),C) is closely connected to the ‘space of modular forms of
weight 2 and level N ’. In fact, by a theorem of Eichler and Shimura [18, Chapter 7],
any cuspidal H-eigenelement α ∈ H1(L2(N),C) has the same H-eigenvalues as some
newform of weight 2 and level N.

One can check that the elliptic curve E given above is modular by finding the
corresponding α, or equivalently the weight 2 modular form of level 11; see, for
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instance, [17, 13]. If we set q = e2πiτ and

η(τ) = eπiτ/12
∞∏
n=1

(1− qn),

then the modular form corresponding to E is

f(τ) = η(τ)2η(11τ)2

=
∑
anq

n

= q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10

+ q11 − 2q12 + 4q13 + 4q14 − q15 − 4q16 − 2q17 + 4q18 + 2q20 + · · · .
It is amusing to check a few of the ap by hand. For instance, if p = 2, then we

compute the solutions Ê(F2) = {(0, 0), (0, 1), (1, 0), (1, 1),∞}. Therefore #Ê(F2) = 5 =
1 + 2− (−2), so a2 should equal −2. It does: the coefficient of q2 in f(τ) is −2.

The conjectures stated above imply the well-known ‘modularity conjecture’: every
elliptic curve defined over Q is modular.

Notice that in our first example, using L1(N), we did not include a ‘point at
infinity’ on V because V was already complete, since it consisted simply of 2
geometric points. In general, including points at infinity compactifies the geometric
space and simplifies the formulas.

For our final example, we move to a higher dimension. H3(L3(N),C) has been
computed for some small values of N in [1, 2, 10, 9], and certain eigenclasses have
been experimentally ‘related’ to Galois representations. Van Geeman and Top have
related a few of these classes to varieties in [10]; here is an example.

Consider V̂ to be the variety given by

t2 = xy(x2 − 1)(y2 − 1)(x2 − y2 + 2xy)

along with points at ∞. Then there is an H-eigenclass in H3(L3(128),C) with

T (k)
p α = a(k)

p α, k = 0, 1, 2, 3,

so that #V̂ (Fpm), for m > 1, corresponds in a precise though rather complicated way
to the pair (a(1)

p , a
(2)
p ) for all primes p 6 67. (Note that a(0)

p = a(3)
p = 1 for all p.)

In particular, define

Npm(V ) := #{(x, y, z) ∈ F3
pm | t2 = xy(x2 − 1)(y2 − 1)(x2 − y2 + 2xy)},

Npm(E) := #{(v, w) ∈ F2
pm | w2 = v(v2 + 2v − 1)}.

The second quantity corresponds to points at∞, and may be considered ‘understood’,
as E is a modular elliptic curve. Then

6∑
i=1

αmi = Npm(V ) + 2Npm(E)− p2m − 2pm
(

1 +
(

2
p

)m)
,

where the numbers αi are determined by the equation

6∏
i=1

(1− αiX) = X6 − c1X
5 + c2X

4 − c3X
3 + p2c2X

2 − p4c1X + p6

=
(
X3 − χ(p)bpX2 + pbpX − χ(p)p3

)(
X3 − χ(p)bpX2 + pbpX − χ(p)p3

)
where bp = a(1)

p , bp = a(2)
p and χ(p) =

(−2
p

)
. The motive in question here is a

6-dimensional piece of H2(V̂ ), which itself is 34-dimensional.
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There is as yet no proof of this correspondence for all p, though there is no
reason other than lack of computer time that the computations cannot be continued
for larger primes.

The status of the generalized reciprocity conjecture, restricted as we have treated
it, that is, for homology with trivial coefficients, is summarized neatly by the
number n. For n = 1, it is essentially equivalent to class field theory for Q or
the theory of cyclotomic fields. For n = 2, the results of Breuil, Conrad, Diamond,
Taylor and Wiles cited in the introduction, along with results of Eichler and Shimura
[8, 18], give a good piece of the picture. For n > 3, the conjecture is mostly unproven.

Appendix

In this appendix, we introduce Galois representations, which are really at the
heart of the conjectures described above. We also give one more example; in this
one, the motive conjectured to exist is not yet known.

A motive affords a compatible series of `-adic representations of GQ, the Galois
group of Q over Q. In an `-adic representation ρ, for each finite unramified prime p,
the characteristic polynomial Fp of a Frobenius element φp at p is well-defined
and gives information about how ρ(φp) acts in the representation. Thus a formula
expressing Fp in some other terms can be thought of as a generalized reciprocity
law. Moreover, as we have seen above, Fp is closely related to the #V (Fpm ) for the
variety V from which the given motive comes.

For a last concrete example, consider the Hecke eigenclass α on L3(61) from [1].
If we set ω = (1 +

√−3 )/2, then the first few a(1)
p were computed to be as follows.

p 2 3 5 7 11

a(1)
p 1− 2ω −5 + 4ω −2 + 4ω −6ω −2 + 2ω

For each p, a(2)
p is the complex conjugate of a(1)

p . We then conjecture the existence
of a continuous 3-dimensional λ-adic representation ρ of GQ (where ` is a rational
prime, and λ is a prime in some number field above `) unramified outside 61` such
that

Fp = X3 − a(1)
p X

2 + pa(2)
p X − p3. (∗)

In [3], we reduced all the coefficients modulo
√−3, and looked for a ρ : GQ →

GL(3,F3). This would be the weakest possible check of the conjecture for ` = 3.
Knowing the Fp allowed us to infer how ρ(φp) must act, and hence (eventually) how
p must split in the fixed field of ker ρ. For instance, if p = 11, then a(1)

p ≡ a(2)
p ≡

−1 (mod 3) and p ≡ −1 (mod 3), so Fp ≡ X3 + X2 + X + 1. Thus ρ(φp) must be a
matrix in GL(3,F3) with that characteristic polynomial. Juggling such information,
we determined the only possible ρ, and showed that it matched the given data. We
have no idea how to show that ρ is really attached to α (that is, that (∗) holds for
all p - 3 · 61), nor how to find ρ.

To summarize this example: we have here reciprocity between a certain series
of representations of GQ and the Hecke information contained in α. It is relatively
easy to compute α and then to conjecture these rather deep properties of GQ.

In the case of the proof of Fermat’s last theorem, a putative solution of the
Fermat equation leads to a certain representation of GQ. It is this representation
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that is shown not to exist by proving that it should be controlled through reciprocity
by a certain Hecke eigenclass in L2(2), which is readily checked to be non-existent.
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