4 Introduction

to ensure that the categories of quantum spaces and quantum groups have
reasonable properties, it would be necessary to impose some restrictions on
the class of algebras which are acceptable as ‘quantized algebras of functions’.
Manin suggests that one should work with *Koszul algebras’, but we shall not
discuss this point here.) As is common practice in the literature, we shall
often abuse terminology by referring to a Hopf algebra itself as a quantum
group.

As the preceding discussion suggests, one way to try to construct non-
classical examples of quantum groups is to look for deformations, in the cat-
egory of Hopf algebras, of classical algebras of functions F(G). Just as the
classical Poisson bracket can be recovered as the ‘first order part’ of Moyal’s
deformation (see (3)), so it turns out that the existence of a deformation
Fi(G) of F(G) automatically endows the group G itself with extra struc-
ture, namely that of a Poisson—~Lie group. This is a Poisson structure on ¢
which is compatible with the group structure in a certain sense. Conversely,
to construct deformations of F(G), it is natural to begin by describing the
possible Poisson-Lie group structures on G and then to attempt to extend
these ‘first order deformations’ to full deformations. This is the approach
taken in this book. Poisson-Lie groups are also of interest in their own right,
for they form the natural setting for the study of classical integrable systems
with symmetry.

There is another Hopf algebra associated to any Lie group G, namely the
universal enveloping algebra U/ (8) of its Lie algebra g. This is essentially the
dual of F(G) in the category of Hopf algebras. In general, the vector space
dual A* of any finite-dimensional Hopf algebra A is also a Hopf algebra: the
muitiplication A* ® A* — A* is dual to the comultiplication A: 4 - A® A4
of A, and the comultiplication of A* is dual to the multiplication of A. Note
that A* is commutative if and only if A is cocommutative, i.e. if and only if
A(A) is contained in the symmetric part of A ® A. If, as is usually the case
in examples of interest, A is infinite dimensional, this duality often continues
to hold provided the dual and tensor product are defined appropriately. To
a deformation F,(G) of F(G) through (not necessarily commutative) Hopf
algebras therefore corresponds a deformation Un(g) of U(g) through (not
necessarily cocommutative) Hopf algebras,

In fact, only non-cocommutative deformations of I/ (8) are of interest, since
any deformation of U(g) through cocommutative Hopf algebras is necessarily
of the form U(gy) for some deformation gn of g through Lie algebras. How-
ever, many interesting Lie algebras have no non-trivial deformations. This is
the case, for example, if g is a (finite-dimensional) complex semisimple Lie al-
gebra, such as the Lie algebra sl, (@) of 2 x 2 complex matrices of trace zero,
This follows from the fact that the condition of semisimplicity is open, so
that any small deformation of g will still be semisimple, whereas the semisim-
ple Lie algebras are discretely parametrized (by their Dynkin diagrams, for
example).
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The first example of a non-cocommutative deformation of this type was
discovered by P. P. Kulish and E. K. Sklyanin in 1981 in ﬁrm. cese g = sla (@)
{although the importance of its Hopf structure was not realized until later).
Note that siz(C) has a basis

o e (10 B 0)

whose Lie brackets are given by

(5a) (X, X" ]=H, [HX¥==x2X%

The comultiplication is given on these basis elements by

(5b) AHN=Hx1+18H, AXH=X*®1+1@X%,

an assignment which extends uniquely to an algebra roEoBQvEmS A
U(sl2{€)) — U(sl2(€)) ® U(sl2(T)). The deformation U, (slz(C)) is gener-
ated by elements H, X*, which satisfy the relations

ehH _ o—hH

HX* - X*H = tax*.

)

(62) XYXT-X"Xt= gy

It has a non-cocommutative comultiplication given on generators by

AH)=H®1+1®H,
(6b) AXN =Xt 10X, AX )=X"@l+e M oX".
Formally, at least, it is clear that (6a) and (6b) go over into (5a) and mmcv as
h — 0. The Hopf algebra defined in (6a,b) is called ,9.53:5 sl3(C)’. (See
Chapter 6 for the formulas for the antipode and counit of Uy(sl2(T)), and
for a way to make sense of expressions such as e’f.) .
The Hopf algebra dual to Ui (slz(€)), the ‘algebra Fj, (S Ly (C)) of ?mnsﬁ.ﬁm
on quantum SL,(C)’, was discovered by L. D. Faddeev and L. A. Hmwrﬁ&m:
in 1985. It is the associative algebra generated by elements a, b, ¢, d with the
following multiplicative relations:

(7) ab=e""ba, ac=e""ca, bd=e"db, cd=eTdc,
(8) bc=cbh, ad—da+ (" —e Mbc=0,
(9) ad — e Mbe =1,

and comultiplication

Ala)=a®a+b®c, A(D)=a®b+bR®d,
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Alc)=c®a+d®c, A(d)=c®b+dad.
Note that, when i — 0, the relations (7), (8) and (9) just say that the matrix

a b
. c d
has commuting entries and determinant one. Thus, F(SL2(T)) is a defor-

mation of the algebra of functions on the group SLy(C) of 2 x 2 complex
matrices of determinant one.

As we mentioned at the beginning of this intreduction, the algebra structure
of Fx(G) can be described by a matrix of constants, namely

et 0 0 0
10 R = M2 0 1 0 0
(10) € 0 eh—eh 1 0 |-
0 0 0 e
In fact, if
_f{fa b
= 3)
the relations (7) and (8) are equivalent to
(11) (TRNI1®T)R=R(1THT®1).

Note that T® 1 and 1 ® T do not oodEEﬁw, since the entries of T do not
commute (if & # 0); note also that R is most naturally viewed as an element
of End(C? ® €?). It is in the form (11) that quantum groups usually appear
in the theory of integrable systems.

For the dual Hopf algebra Uy (sl3(C)), the quantum R-matrix expresses, as
one would expect, the non-cocommutativity of the comuitiplication. Namely
let A°P(z) be the result of interchanging the order of the factors in D?&“
for any z € Uy(si2(C)). It turns out that there is an invertible element
R € Un(sl2(C)) ® Un(slz(C)), called the “universal R-matrix’, such that

A%(z) = RA(z)R 1

for all z € Un(sl2(C)} (actually, R is a formal infinite sum of elements of the
m_Mm_u_,m_a. tensor product). The relation between R and R is very simple: the
reader will easily verify that, if we replace X* and & by X* and H in (4),

we oveﬂs a matrix representation of Uy (sl2((C)); applying this representation
to R gives the matrix R.

OE:;.:B groups might have remained a curiosity to the mathematical
community at large but for their surprising connections with other parts of
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mathematics, most notably the theory of invariants of links and 3-manifolds,
and the representation theory of Lie algebras in characteristic p.

The former depends on the classical relation between braids and links.
Recall that a braid on m strands is a collection of m non-intersecting strings
in IR3 joining m fixed points in a plane to m fixed points in another parallel
plane. Joining corresponding points in the two planes in a standard way
associates to any braid a link (called its ‘closure’), i.e. a collection of non-
intersecting circles in R®. Joining braids end to end makes the set of isotopy
classes of braids into a group B,,. The relation with quantum groups arises
because there is a simple way to associate to any quantum R-matrix R €
End(V ® V) a representation g, of B, on V™ for all rn > 2. This depends
on the fact that R satisfies the quantum Yang-Baxter equation

R\2R 3R23 = Ry3R13R19;

here, Rj; means R ® id € End(V®3), etc. To obtain an invariant of links,
one needs a family of ‘traces’ tr,, : End(V®™) — € such that tr,,(p, (b)) =
trn(pn(b’)) whenever the closures of the braids b € B,, and ¥ € B, are
equivalent links. Thanks to a classical theorem of A. Markov, it is known
precisely which pairs (b, &) have the latter property (and for this reason, the
tr,, are usually called ‘Markov traces’). Using the quantum R-matrix (10)
and a suitable Markov trace, one obtains in this way the celebrated Jones
polynomial. In fact, this is essentially Jones's original construction, except
that he obtained his R-matrix by using a ‘Hecke algebra’ instead of a quantum
group (but we shall see that Hecke algebras should probably be regarded as
‘quantum’ objects).

The application to 3-manifolds is based on the well-known fact that every
compact, oriented, connected 3-manifold without boundary can be obtained,
up to homeomorphism, by performing surgery on a link in the 3-dimensional
sphere. One shows that a cleverly chosen combination of the quantum invari-
ants of this link depends only on the 3-manifold, and not on the choice of the
link along which surgery is performed.

The application of quantum groups to representations of Lie algebras in
characteristic p is no less remarkable. It makes use of a certain ‘standard’ de-
formation Uy (g) of U(g), where g is any finite-dimensional complex semisim-
ple Lie algebra (and which reduces, when g = sis(C), to the algebra found
by Kulish and Sklyanin). To describe the relation with characteristic p, it is
convenient to replace the deformation parameter h by € = e®, and to write
U.(g) for Ux(g). It then turns out that the representation theory of U(g) de-
pends crucially on whether ¢ is a root of unity or not. In the latter case, the
theory is essentially the same as the representation theory of g itself (over €),
but in the former it resembles the modular representation theory of g. This is
more than an analogy: if ¢ is a primitive pth root of unity, where p is a prime,
there is a ring homomorphism from U,(g) to the enveloping algebra U, (@)




