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5) q; = 1 for all distinct i,j € I := {l # a: g = 1}: Indeed, 2’ = z — e* + e+
e/ + e is >0 and satisfies z, = s + 1, hence 2 < q(z') =5 — q(zl|e”) — qu —
daj — 9an + qij + g + din = 1+ qi;-

6) 2, =3+ Yicrzi= —1 + ¥ jes2;, where J := {j: g,; = 0}: For, 1 = ¢(z]e)
=22+ Yierzi— 2, and 0=q(zle")= —2,— V1%~ LjesZi+ 22, =
(o= YierZ) = Za— YjesZtza=3—-2— YiesZ + Zn

7) z;= landq; = Oif i Iandj € J:For,0 = g(zle') = z, + 22; + Y ipter 21 +
Y ieszidy — Zn = Crerzi—z)+z.+z+ Yijeszdy=—1+z+ Y jes iy

8) If c e J is such that z, > z; for all j € J, there are two distinct j, l in J such
that g, = gy = 0: For, 0= q(zle) =2z, + YcpjesZidej — Zn = 2 = Ljer % +
jeszi—2) =2+ 1= ;e 2, where J' = {je J: q.; = 0}. Since z, > z; for
each j € J', J' has at least 2 elements.

9) Conclusion: Suppose that s = z, > 7. By 6) and 7), I has at least 4 elements
iy, iy, i3, ig. The “full” subbigraph of the bigraph of g which is formed by the
vertices a, iy, iy, i3, igs C, J, |, n is therefore isomorphic to the fourth bigraph of
Fig. 1 or to a bigraph having one broken edge less (between j and /). This leads
us to the contradiction

gle® + €' + €' + e + e + 3e° + 2¢7 + 2¢' + 6e") = —4 + 4¢; < 0./

6.8. Remarks and References
1. In [135, 1977], A.V. Roiter examines functions on Z" of the form g(x) = }; qxt + Y i< QXX
where g,, g;;/q; and ¢;;/q; are integers and g, > 0.
2. The roots of a positive unit form provide a system of roots in the sense of [29, Bourbaki, 1968].
Dynkin graphs were introduced in [44, Dynkin, 1947].
3. [118, Ovsienko, 1978].
4. [75, von Hohne, 1988].
5. See [135, Roiter, 1977), where a more precise theorem is proved for integral quadratic forms.
6. [119, Ovsienko, 1979]. Ovsienko proves his theorem in the more general context of Roiter’s
integral forms. His key idea is to reduce the proof to the case of an L-bigraph (which satisfies the
statements 1), 2) and 3) of 6.7). The faithful weakly positive L-bigraphs (=sincere weakly positive
graphical forms) are classified in [132, Ringel, 1984]. We owe the details of our proof to K. Bongartz
who leans on Ringel.

7. Representations of Quivers

In this section, we examine representations of a finite quiver Q over the
algebraically closed field k. These representations are identified with left modules
over the k-category of paths kQ. Unless otherwise stated, we assume that they
are pointwise finite.

7.1. In our investigation, a central rdle is played by the quadratic form!
do: Z9% — Z defined by
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go(d) = ZQ d(a)? — z(:z d(to)d(ho).
We are especially interested in the value go(dim V) of g, at the dimension-function
dim V: x — dim V(x) of a representation V.

Theorem?. The number of isoclasses of indecomposable representations of Q is
finite if and only if q,, is positive definite. If this is the case, the map V — dim V
provides a bijection between the set of these isoclasses and the set of positive roots
of qq.

As we know by 6.2, g, is positive definite if and only if Q is a disjoint union
of Dynkin quivers. It follows that, if Q is Dynkin of type 4,, it has 4n(n + 1)
isoclasses of indecomposables. Among them, one only is omnipresent>. It may be
delineated as follows:

k——k—k——k——k

If Q is Dynkin of type D,, it has (n — 1)n isoclasses of indecomposables. Up to
isomorphism, the omnipresent indecomposables are those of Fig. 1 (according
to the orientations of the arrows, a is represented by the matrix [0 1] or [1 0],
bby[1 0]or [0 1]J7 and c by [1 tJor[1 1]7):

k\ﬂknknk
k=1
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k/b K K k k

Fig. 1

If Q is Dynkin of type Eg, E; or Eg, it has 36, 63 or 120 isoclasses of
indecomposables respectively. A concrete description will be produced in Sect.
10.

Example 1. A vector space V, together with 3 subspaces V;, V, V3 can be

. . .oXx .
interpreted as a representation of the quiver xl ) Xo « Xx5. These representations
2

can easily be classified “by hand”. In particular, when V, has dimension 4 and
V,, V,, Vs are pairwise supplementary subspaces of dimension 2, the associated
representation is a direct sum of 2 isomorphic indecomposables with dimension-

.1 . . . L.
function 1:2—— 1. In geometrical terms, this means that in the projective 3-space
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.Fig. 2

Fhree straight lines v,, v,, v; in skew position admit two common secants 515 8,
in skew position (Fig. 2).

Example 2. Let ¥V, = k" be the space of n-columns and V; the i-dimensional
subspace {x € k™ x, = 0ifi < g}. Each invertible n x n-matrix g gives rise to the
representation

Vl_’VZ_'”_’Vvl—l_'V;n‘_gVn—l‘_”'—sz‘—ng

of a Dynkin quiver of type A4,,_, (the maps are inclusions). Our classification of
the indecomposables here means that ¥, admits a basis b’, ..., b" such that
b'e Vin gV, Vi = h<ikb" and gV, = @), kb" for some permutation o (in
terms of algebraic groups, two Borel subgroups of GL, contain a common
maximal torus*). Denoting by e!, ..., e" the natural basis of k", by o the
permutation-matrix such that ge’ = ¢°' and by b the upper triangular matrix
with columns b', ..., b", we get be' = b', b~gV, = Doncjkb b = P ,pe ke =
o™'V; and gb™'g¥; = V,. We infer that g = bg™!c, where g7! is a permutation-
matrix and b, ¢ are upper triangular.

7.2. Among the possible proofs of Theorem 7.1, we choose one which stresses
the réle of the quadratic form g,. It uses elementary notions of algebraic geome-
try and homological algebra.

We first notice that two representations ¥ and W of Q give rise to an exact
sequence .

(*) 0—Hom(V, W)- [] Hom,(V(x), W(x))> [] Hom,(V(ta), W(ha)) —

xeQ, aeQ,

4 Ext'(V, W) =0,

where y denotes the inclusion, § maps a family (f (®Dxe g, onto (f(ha)V(x) —

W(0)f(ta)),e o, arild ¢ maps (g(®)),eq, Onto the equivalence class of the exact
sequence 0 - W— E5 V — 0 such that E(x) = W(x) @ V(x) for each x € Q, and

E) = [W(a) o(@)

0 V(a):l for each a € Q, (the morphisms i and p are the obvious
ones).

If d and e are the dimension-functions of V and W, () implies

dim Hom(V, W) — dim Ext'(V, W) = Y dim Hom,(V(x), W(x))

— Y dim Hom,(V (ta), W(ha))
=Y d(x)e(x) — Y. d(ta)e(ha)

and in particular
dim Hom(V, V) — dim Ext'(V, V) = ) d(x)* — _ d(ta)d(ha) = qo(d).

Lemma. If q, is positive definite, we have Hom(V, V) = k1, for each indecom-
posable representation V of Q.

Proof ®. Let V be a counterexample of minimal dimension and f a non-zero
nilpotent endomorphism of ¥ whose image I has minimal dimension. Set K =
Kerf= K, ® - @ K,, where each K, is indecomposable.

Since dim I is minimal, I is indecomposable, we have f? = 0, hence I < K,
and each non-zero projection p;: I — K is injective. Since V is indecomposable,
the equivalence class ¢ = (¢;) € Ext(I, K) > @, Ext!(I, K,) of the exact sequence
0— K = V = I - 0is non-zero, and so is each ¢;.

Now, since p;: I — K is injective, the exact sequences (*) applied to V = K|,
I and W = K, show that Ext!(p,, K,): Ext!(K,, K,) —» Ext!(I, K,) is surjective.
It follows that Ext!(K;, K;) # 0. On the other hand, the minimality of dim V
implies Hom(K;, K;) = k1, hence the required contradiction

0 < gqo(dim K;) = dim Hom(K, K;) — dim Ext'(K;, K;)
= 1 — dim Ext!(K,, K;) < 0./

7.3. Proof of theorem 7.1. With the notations of 7.2, suppose that ¥V = W and
that ¥(x) = k%*® for each x € Q,. The representation V can then be identified

with the family
(V(®))aeo, € [T Homy(V(ta), V(ha)) > [T kdhxdoa),

We denote this product by X, and endow it with its natural structure of an
algebraic variety of dimension Y , d(ta)d(h).

On the other hand, the space [ ], Hom,(V(x), V(x)) of () is identified with
a product of matrix-algebras [].k%“**®. Its invertible elements form an
algebraic group G, = [, GLy, of dimension ), d(x)%. The formula (gV)(a) =
g(ha)V(a)g(ta)™! defines an action of G, on X, whose orbits correspond
bijectively to the isoclasses of representations of Q with dimension-function d.

The isotropy group Gy, = {g € G;: gV = V} is the group of automorphisms of
¥, i.e. of invertible elements of Hom(V, V). It is Zariski-open in Hom(V, V) and
has the same dimension. It follows® that the orbit G,V = {gV: g € G,} has the
dimension dim G,V = dim G, — dim G,, = dim G; — dim Hom(V, V) and that



dim Hom(V, V) — dim Ext'(V, V) = q,(d) = dim G, — dim X,
= dim Hom(¥, ¥) — (dim X, — dim G, V).

These equalities imply dim X, > dim G,V if do(d) < 0. In this case, there are
infinitely many orbits, hence infinitely many isoclasses of indecomposables with
dimension-function <d. The case arises when dg is not positive definite, because
then there is a d > 0 such that g,4(d) < 0.

If q4 is positive definite and V indecomposable, our Lemma 7.2 implies

0 <go(@d) =1—(dim X, — dim G,V)
hence do(d) = 1 and dim X, = dim G, V.

It follows that G, V is Zariski-open’ and dense in X, 4- Therefore, it coincides with
the orbit of any other indecomposable in X,, and the map V +— dim V provides
an injection from the set of isoclasses of indecomposables into the set of positive
roots.

It remains to prove that each positive root d is the dimension-function of an
indecomposable: We already know that the number of isoclasses of indecompos-
ables is finite. It follows that X, contains only finitely many orbits, and one of
them, say G,V, must have the same dimension as X,. So we have 1 = gy(d) =
dim Hom(V, V), Hom(V, V) = k1, is local, and V is indecomposable. ./

7.4. Let us return to the general case of a finite quiver Q. The objective is
to describe the subset of Z2 formed by the dimension-functions of the in-
decomposable representations. For this we consider the bilinear form qo(dle) =
qdo(d + e) — qo(d) — gy(e) associated with 9g- By 7.2, this form satisfies

qo(dim V|dim W) = dim Hom(V, W) + dim Hom(W, V) — dim Ext!(V, W)
— dim Ext!(W, V).
It is also determined by the following formulas, where (i) = 1 and e( ) =0if
J#ieQ,:
44qq(€'le’) = 1 — number of loops O
—qgle’ Iefj = number of arrows between i and j # i.

In particular, we have gy (e‘|e’) = 2 if ' is a simple root, i.c. if there is no loop at
i. The formula

0i(d) = d — qo(e’|d)e’,  deZ%,

then defines the reflection in the direction €', i.e. the automorphism of Z% which
maps e’ onto —e' and fixes the vectors orthogonal to e, The group generated
by these reflections is the Weyl group W,. The positive functions belonging to
the orbit Wye' of a simple root e* are the real roots (6.5). We denote their set by Rg.

The fundamental cone Kg = Z9 consists of the positive functions d which
satisfy go(e‘|d) < O for each simple root e and have a connected (non-empty)

support. Under the action of W, it generates the set R’ = | )., w, WK of imagi-
nary roots.8

Theorem®. If d is a real root, there is exactly one isoclass of indecomposables
with dimension-function d. If d is an imaginary root, there are infinitely many such
isoclasses. There is none if d ¢ R U R

If g, is positive definite, there is no imaginary root, and the real roots coincide
with the positive roots as follows from our theorems or from 6.5.

If Q is an extended Dynkin quiver, the quadratic form g, is positive semi-
definite. The isotropic functions, on which g, vanishes, are then integral multiples
of the isotropic generator 62 (6.3). In this case, we have Ry’ = K, = {n6% ne
N\{0}}, and it is easy' to exhibit an infinite family of non-isomorphic indecom-
posables with dimension-function n62, n > 0. In the case of Example 1 below,
the required family is

kn 1n kn
1\ /S1n+"n
k'l

where s, + J, denotes a “Jordan-block” with eigenvalue s (1.7).

If Q contains a component which is neither Dynkin nor extended Dynkin, there
are functions d € K such that g,(d) < 0, but there is no! positive d with support
Q such that qy(e’|d) = 0 for all i€ Q,.

———-’ b
c
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Example 1. ‘x / s qo(xe® + ye? + ze)=x2 + y?> + 22 — yz — xz — xy

/A

e = real root
o = imaginary root

Fig. 3



