7. Representations of Quivers

63

5)  $q_{ij} = 1$  for all distinct  $i, j \in I := \{l \neq a : q_{al} = 1\}$ : Indeed,  $z' = z - e^a + e^i + e^$  $e^{j} + e^{n}$  is > 0 and satisfies  $z'_{n} = s + 1$ , hence  $2 \le q(z') = 5 - q(z|e^{a}) - q_{ai}$  $q_{ai} - q_{an} + q_{ij} + q_{in} + q_{jn} = 1 + q_{ij}$ 

6)  $z_n = 3 + \sum_{i \in I} z_i = -1 + \sum_{j \in J} z_j$ , where  $J := \{j : q_{aj} = 0\}$ : For,  $1 = q(z|e^a)$  $= 2z_a + \sum_{i \in I} z_i - z_n \quad \text{and} \quad 0 = q(z|e^n) = -z_a - \sum_{i \in I} z_i - \sum_{j \in J} z_j + 2z_n =$  $(z_n - \sum_{i \in I} z_i) - z_a - \sum_{j \in J} z_j + z_n = 3 - 2 - \sum_{j \in J} z_j + z_n.$ 7)  $z_i = 1$  and  $q_{ij} = 0$  if  $i \in I$  and  $j \in J$ : For,  $0 = q(z|e^i) = z_a + 2z_i + \sum_{i \neq l \in I} z_l + \sum_{i \neq l \in I}$ 

 $\sum_{i \in J} z_i q_{ii} - z_n = (\sum_{l \in I} z_l - z_n) + z_a + z_i + \sum_{i \in J} z_i q_{ii} = -1 + z_i + \sum_{i \in J} z_i q_{ii}.$ 

8) If  $c \in J$  is such that  $z_c \geqslant z_i$  for all  $j \in J$ , there are two distinct j, l in J such that  $q_{cj} = q_{cl} = 0$ : For,  $0 = q(z|e^c) = 2z_c + \sum_{c \neq j \in J} z_j q_{cj} - z_n = z_c - \sum_{j \in J'} z_j + (\sum_{j \in J} z_j - z_n) = z_c + 1 - \sum_{j \in J'} z_j$ , where  $J' = \{j \in J : q_{cj} = 0\}$ . Since  $z_c \ge z_j$  for each  $i \in J'$ , J' has at least 2 elements.

9) Conclusion: Suppose that  $s = z_n \ge 7$ . By 6) and 7), I has at least 4 elements  $i_1$ ,  $i_2$ ,  $i_3$ ,  $i_4$ . The "full" subbigraph of the bigraph of q which is formed by the vertices  $a, i_1, i_2, i_3, i_4, c, j, l, n$  is therefore isomorphic to the fourth bigraph of Fig. 1 or to a bigraph having one broken edge less (between i and l). This leads us to the contradiction

$$q(e^a + e^{i_1} + e^{i_2} + e^{i_3} + e^{i_4} + 3e^c + 2e^j + 2e^l + 6e^n) = -4 + 4q_{ii} \le 0.$$

## 6.8. Remarks and References

1. In [135, 1977], A.V. Roiter examines functions on  $\mathbb{Z}^n$  of the form  $q(x) = \sum_i q_i x_i^2 + \sum_{i < i} q_{ij} x_i x_j$ , where  $q_i$ ,  $q_{ii}/q_i$  and  $q_{ii}/q_i$  are integers and  $q_i > 0$ .

2. The roots of a positive unit form provide a system of roots in the sense of [29, Bourbaki, 1968]. Dynkin graphs were introduced in [44, Dynkin, 1947].

- 3. [118, Ovsienko, 1978].
- 4. [75, von Höhne, 1988].
- 5. See [135, Roiter, 1977], where a more precise theorem is proved for integral quadratic forms.
- 6. [119, Ovsienko, 1979]. Ovsienko proves his theorem in the more general context of Roiter's integral forms. His key idea is to reduce the proof to the case of an L-bigraph (which satisfies the statements 1), 2) and 3) of 6.7). The faithful weakly positive L-bigraphs (=sincere weakly positive graphical forms) are classified in [132, Ringel, 1984]. We owe the details of our proof to K. Bongartz who leans on Ringel.

## 7. Representations of Quivers

In this section, we examine representations of a *finite* quiver Q over the algebraically closed field k. These representations are identified with left modules over the k-category of paths kQ. Unless otherwise stated, we assume that they are pointwise finite.

7.1. In our investigation, a central rôle is played by the quadratic form<sup>1</sup>  $q_0: \mathbb{Z}^{Q_v} \to \mathbb{Z}$  defined by

$$q_{Q}(d) = \sum_{a \in Q_{v}} d(a)^{2} - \sum_{\alpha \in Q_{a}} d(t\alpha)d(h\alpha).$$

We are especially interested in the value  $q_0(\dim V)$  of  $q_0$  at the dimension-function  $\dim V: x \mapsto \dim V(x)$  of a representation V.

**Theorem<sup>2</sup>.** The number of isoclasses of indecomposable representations of Q is finite if and only if  $q_0$  is positive definite. If this is the case, the map  $V \mapsto \underline{\dim} V$ provides a bijection between the set of these isoclasses and the set of positive roots of  $q_0$ .

As we know by 6.2,  $q_0$  is positive definite if and only if Q is a disjoint union of Dynkin quivers. It follows that, if Q is Dynkin of type  $A_n$ , it has  $\frac{1}{2}n(n+1)$ isoclasses of indecomposables. Among them, one only is omnipresent<sup>3</sup>. It may be delineated as follows:

$$k \xrightarrow{1} k \xrightarrow{1} k \longrightarrow \cdots \longrightarrow k \xrightarrow{1} k$$

If O is Dynkin of type  $D_n$ , it has (n-1)n isoclasses of indecomposables. Up to isomorphism, the omnipresent indecomposables are those of Fig. 1 (according to the orientations of the arrows, a is represented by the matrix  $\begin{bmatrix} 0 & 1 \end{bmatrix}$  or  $\begin{bmatrix} 1 & 0 \end{bmatrix}^T$ , b by [1 0] or [0 1]<sup>T</sup> and c by [1 1] or [1 1]<sup>T</sup>):

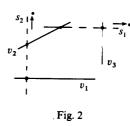
$$k \xrightarrow{1} k \xrightarrow{1} k \xrightarrow{1} k \xrightarrow{1} k \xrightarrow{1} k \xrightarrow{1} k$$

$$k = a$$
 $k = 1$ 
 $k^2 = 1$ 
 $k^2 = -k^2 = c$ 
 $k = 1$ 
 $k = -k$ 

Fig. 1

If Q is Dynkin of type  $E_6$ ,  $E_7$  or  $E_8$ , it has 36, 63 or 120 isoclasses of indecomposables respectively. A concrete description will be produced in Sect.

**Example 1.** A vector space  $V_0$  together with 3 subspaces  $V_1$ ,  $V_2$ ,  $V_3$  can be interpreted as a representation of the quiver  $x_1 > x_0 \leftarrow x_3$ . These representations can easily be classified "by hand". In particular, when  $V_0$  has dimension 4 and  $V_1$ ,  $V_2$ ,  $V_3$  are pairwise supplementary subspaces of dimension 2, the associated representation is a direct sum of 2 isomorphic indecomposables with dimensionfunction  $\frac{1}{1}$  2—1. In geometrical terms, this means that in the projective 3-space



three straight lines  $v_1$ ,  $v_2$ ,  $v_3$  in skew position admit two common secants  $s_1$ ,  $s_2$  in skew position (Fig. 2).

**Example 2.** Let  $V_n = k^n$  be the space of *n*-columns and  $V_i$  the *i*-dimensional subspace  $\{x \in k^n: x_q = 0 \text{ if } i < q\}$ . Each invertible  $n \times n$ -matrix g gives rise to the representation

$$V_1 \rightarrow V_2 - \cdots \rightarrow V_{n-1} \rightarrow V_n \leftarrow gV_{n-1} \leftarrow \cdots - gV_2 \leftarrow gV_1$$

of a Dynkin quiver of type  $A_{2n-1}$  (the maps are inclusions). Our classification of the indecomposables here means that  $V_n$  admits a basis  $b^1, \ldots, b^n$  such that  $b^i \in V_i \cap gV_{\sigma i}, V_i = \bigoplus_{h \le i} kb^h$  and  $gV_j = \bigoplus_{\sigma h \le j} kb^h$  for some permutation  $\sigma$  (in terms of algebraic groups, two Borel subgroups of  $GL_n$  contain a common maximal torus<sup>4</sup>). Denoting by  $e^1, \ldots, e^n$  the natural basis of  $k^n$ , by  $\underline{\sigma}$  the permutation-matrix such that  $\underline{\sigma}e^i = e^{\sigma i}$  and by  $\underline{b}$  the upper triangular matrix with columns  $b^1, \ldots, b^n$ , we get  $\underline{b}e^i = b^i, \underline{b}^{-1}gV_j = \bigoplus_{\sigma h \le j} k\underline{b}^{-1}b^h = \bigoplus_{\sigma h \le j} ke^h = \underline{\sigma}^{-1}V_j$  and  $\underline{\sigma}\underline{b}^{-1}gV_i \subset V_i$ . We infer that  $g = \underline{b}\underline{\sigma}^{-1}\underline{c}$ , where  $\underline{\sigma}^{-1}$  is a permutation-matrix and  $\underline{b}, \underline{c}$  are upper triangular.

**7.2.** Among the possible *proofs* of Theorem 7.1, we choose one which stresses the rôle of the quadratic form  $q_Q$ . It uses elementary notions of algebraic geometry and homological algebra.

We first notice that two representations V and W of Q give rise to an exact sequence

(\*) 
$$0 \to \operatorname{Hom}(V, W) \xrightarrow{\gamma} \prod_{x \in Q_v} \operatorname{Hom}_k(V(x), W(x)) \xrightarrow{\delta} \prod_{\alpha \in Q_a} \operatorname{Hom}_k(V(t\alpha), W(h\alpha)) \to \underbrace{\stackrel{\varepsilon}{\to} \operatorname{Ext}^1(V, W) \to 0},$$

where  $\gamma$  denotes the inclusion,  $\delta$  maps a family  $(f(x))_{x \in Q_v}$  onto  $(f(h\alpha)V(\alpha) - W(\alpha)f(t\alpha))_{\alpha \in Q_a}$  and  $\varepsilon$  maps  $(g(\alpha))_{\alpha \in Q_a}$  onto the equivalence class of the exact sequence  $0 \to W \overset{i}{\to} E \overset{p}{\to} V \to 0$  such that  $E(x) = W(x) \oplus V(x)$  for each  $x \in Q_v$  and  $E(\alpha) = \begin{bmatrix} W(\alpha) & g(\alpha) \\ 0 & V(\alpha) \end{bmatrix}$  for each  $\alpha \in Q_a$  (the morphisms i and p are the obvious ones).

If d and e are the dimension-functions of V and W, (\*) implies

dim Hom
$$(V, W)$$
 – dim Ext<sup>1</sup> $(V, W) = \sum_{x} \dim \operatorname{Hom}_{k}(V(x), W(x))$   

$$- \sum_{\alpha} \dim \operatorname{Hom}_{k}(V(t\alpha), W(h\alpha))$$

$$= \sum_{x} d(x)e(x) - \sum_{\alpha} d(t\alpha)e(h\alpha)$$

and in particular

$$\dim \operatorname{Hom}(V, V) - \dim \operatorname{Ext}^1(V, V) = \sum_x d(x)^2 - \sum_\alpha d(t\alpha) d(h\alpha) = q_Q(d).$$

**Lemma.** If  $q_Q$  is positive definite, we have  $\operatorname{Hom}(V, V) = k \mathbb{1}_V$  for each indecomposable representation V of Q.

*Proof* <sup>5</sup>. Let V be a counterexample of minimal dimension and f a non-zero nilpotent endomorphism of V whose image I has minimal dimension. Set  $K = \text{Ker } f = K_1 \oplus \cdots \oplus K_s$ , where each  $K_i$  is indecomposable.

Since dim I is minimal, I is indecomposable, we have  $f^2 = 0$ , hence  $I \subset K$ , and each non-zero projection  $p_i \colon I \to K_i$  is injective. Since V is indecomposable, the equivalence class  $\varepsilon = (\varepsilon_i) \in \operatorname{Ext}^1(I, K) \xrightarrow{\sim} \bigoplus_i \operatorname{Ext}^1(I, K_i)$  of the exact sequence  $0 \to K \to V \to I \to 0$  is non-zero, and so is each  $\varepsilon_i$ .

Now, since  $p_i: I \to K_i$  is injective, the exact sequences (\*) applied to  $V = K_i$ , I and  $W = K_i$  show that  $\operatorname{Ext}^1(p_i, K_i)$ :  $\operatorname{Ext}^1(K_i, K_i) \to \operatorname{Ext}^1(I, K_i)$  is surjective. It follows that  $\operatorname{Ext}^1(K_i, K_i) \neq 0$ . On the other hand, the minimality of dim V implies  $\operatorname{Hom}(K_i, K_i) = k \mathbb{I}_{K_i}$ , hence the required contradiction

$$0 < q_{Q}(\underline{\dim} K_{i}) = \dim \operatorname{Hom}(K_{i}, K_{i}) - \dim \operatorname{Ext}^{1}(K_{i}, K_{i})$$
$$= 1 - \dim \operatorname{Ext}^{1}(K_{i}, K_{i}) \leq 0. \sqrt{$$

7.3. Proof of theorem 7.1. With the notations of 7.2, suppose that V = W and that  $V(x) = k^{d(x)}$  for each  $x \in Q_v$ . The representation V can then be identified with the family

$$(V(\alpha))_{\alpha \in Q_a} \in \prod_{\alpha} \operatorname{Hom}_k(V(t\alpha), V(h\alpha)) \xrightarrow{\sim} \prod_{\alpha} k^{d(h\alpha) \times d(t\alpha)}.$$

We denote this product by  $X_d$  and endow it with its natural structure of an algebraic variety of dimension  $\sum_{\alpha} d(t\alpha) d(h\alpha)$ .

On the other hand, the space  $\prod_x \operatorname{Hom}_k(V(x), V(x))$  of (\*) is identified with a product of matrix-algebras  $\prod_x k^{d(x) \times d(x)}$ . Its invertible elements form an algebraic group  $G_d = \prod_x GL_{d(x)}$  of dimension  $\sum_x d(x)^2$ . The formula  $(gV)(\alpha) = g(h\alpha)V(\alpha)g(t\alpha)^{-1}$  defines an action of  $G_d$  on  $X_d$  whose orbits correspond bijectively to the isoclasses of representations of Q with dimension-function d.

The isotropy group  $G_{dV} = \{g \in G_d : gV = V\}$  is the group of automorphisms of V, i.e. of invertible elements of Hom(V, V). It is Zariski-open in Hom(V, V) and has the same dimension. It follows<sup>6</sup> that the orbit  $G_dV = \{gV : g \in G_d\}$  has the dimension  $\dim G_dV = \dim G_d - \dim G_{dV} = \dim G_d - \dim Hom(V, V)$  and that

$$\dim \operatorname{Hom}(V, V) - \dim \operatorname{Ext}^1(V, V) = q_Q(d) = \dim G_d - \dim X_d$$

$$= \dim \operatorname{Hom}(V, V) - (\dim X_d - \dim G_d V).$$

These equalities imply dim  $X_d > \dim G_d V$  if  $q_Q(d) \le 0$ . In this case, there are infinitely many orbits, hence infinitely many isoclasses of indecomposables with dimension-function  $\le d$ . The case arises when  $q_Q$  is not positive definite, because then there is a d > 0 such that  $q_Q(d) \le 0$ .

If  $q_Q$  is positive definite and V indecomposable, our Lemma 7.2 implies

$$0 < q_Q(d) = 1 - (\dim X_d - \dim G_d V)$$

hence

$$q_O(d) = 1$$
 and dim  $X_d = \dim G_d V$ .

It follows that  $G_dV$  is Zariski-open<sup>7</sup> and dense in  $X_d$ . Therefore, it coincides with the orbit of any other indecomposable in  $X_d$ , and the map  $V \mapsto \underline{\dim} V$  provides an injection from the set of isoclasses of indecomposables into the set of positive roots.

It remains to prove that each positive root d is the dimension-function of an indecomposable: We already know that the number of isoclasses of indecomposables is finite. It follows that  $X_d$  contains only finitely many orbits, and one of them, say  $G_dV$ , must have the same dimension as  $X_d$ . So we have  $1 = q_Q(d) = \dim \operatorname{Hom}(V, V)$ ,  $\operatorname{Hom}(V, V) = k\mathbb{1}_V$  is local, and V is indecomposable.  $\sqrt{\phantom{A}}$ 

**7.4.** Let us return to the general case of a finite quiver Q. The objective is to describe the subset of  $\mathbb{Z}^{Q_v}$  formed by the dimension-functions of the indecomposable representations. For this we consider the bilinear form  $q_Q(d|e) = q_Q(d+e) - q_Q(d) - q_Q(e)$  associated with  $q_Q$ . By 7.2, this form satisfies

$$q_{Q}(\underline{\dim} V | \underline{\dim} W) = \dim \operatorname{Hom}(V, W) + \dim \operatorname{Hom}(W, V) - \dim \operatorname{Ext}^{1}(V, W)$$
  
-  $\dim \operatorname{Ext}^{1}(W, V)$ .

It is also determined by the following formulas, where  $e^{i}(i) = 1$  and  $e^{i}(j) = 0$  if  $j \neq i \in Q_{v}$ :

$$\frac{1}{2}q_{Q}(e^{i}|e^{i}) = 1 - \text{number of loops} \stackrel{i}{\sim}$$
$$-q_{Q}(e^{i}|e^{j}) = \text{number of arrows between } i \text{ and } j \neq i.$$

In particular, we have  $q_Q(e^i|e^i)=2$  if  $e^i$  is a *simple root*, i.e. if there is no loop at i. The formula

$$\sigma_i(d) = d - q_Q(e^i|d)e^i, \qquad d \in \mathbb{Z}^{Q_v},$$

then defines the reflection in the direction  $e^i$ , i.e. the automorphism of  $\mathbb{Z}^{Q_v}$  which maps  $e^i$  onto  $-e^i$  and fixes the vectors orthogonal to  $e^i$ . The group generated by these reflections is the Weyl group  $W_Q$ . The positive functions belonging to the orbit  $W_Q e^i$  of a simple root  $e^i$  are the real roots (6.5). We denote their set by  $R_Q^{re}$ .

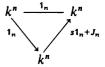
The fundamental cone  $K_Q \subset \mathbb{Z}^{Q_v}$  consists of the positive functions d which satisfy  $q_Q(e^i|d) \leq 0$  for each simple root  $e^i$  and have a connected (non-empty)

support. Under the action of  $W_Q$  it generates the set  $R_Q^{im} = \bigcup_{w \in W_Q} wK_Q$  of imaginary roots.<sup>8</sup>

**Theorem**<sup>9</sup>. If d is a real root, there is exactly one isoclass of indecomposables with dimension-function d. If d is an imaginary root, there are infinitely many such isoclasses. There is none if  $d \notin R_Q^{im} \cup R_Q^{im}$ .

If  $q_Q$  is positive definite, there is no imaginary root, and the real roots coincide with the positive roots as follows from our theorems or from 6.5.

If Q is an extended Dynkin quiver, the quadratic form  $q_Q$  is positive semi-definite. The isotropic functions, on which  $q_Q$  vanishes, are then integral multiples of the isotropic generator  $\delta^Q$  (6.3). In this case, we have  $R_Q^{im} = K_Q = \{n\delta^Q : n \in \mathbb{N}\setminus\{0\}\}$ , and it is easy<sup>10</sup> to exhibit an infinite family of non-isomorphic indecomposables with dimension-function  $n\delta^Q$ , n>0. In the case of Example 1 below, the required family is



where  $s1_n + J_n$  denotes a "Jordan-block" with eigenvalue s (1.7).

If Q contains a component which is neither Dynkin nor extended Dynkin, there are functions  $d \in K_Q$  such that  $q_Q(d) < 0$ , but there is no 11 positive d with support Q such that  $q_Q(e^i|d) \ge 0$  for all  $i \in Q_v$ .

Example 1. 
$$Q \xrightarrow{c} b$$
,  $q_Q(xe^a + ye^b + ze^c) = x^2 + y^2 + z^2 - yz - xz - xy$ 

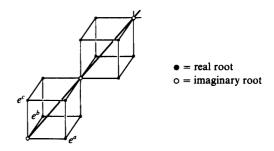


Fig. 3