III Geometry of Grassmannians

We turn now to geometric matters. OQur objects of study will be, for the most
part, complex manifolds. By this we mean they are spaces obtained by gluelng
together complex discs with holomorphic maps. For example, a l-dimensional
compact complex manifold is simply a Riemann surface; (or a nonsingular pro-
jective algebralc curve in the language of algebraic geometry). If the read-
er is so inclined, it 1is possible to simply ignore the complex structure and
think of these objects as ordinary manifolds of twice the stated dimension,
On the other hand, our spaces actually turn out to be projective, algebraic
varieties over € so the machinery of algebraic geometry can profitably be
brought to bear; (more on this in §5).

The prototypical complex manifold is the complex projective space .
It is obtained from En+1— {0}. by making the identifications (zo,...,zn+1)
~ X(zo,...,zn+1) where X 1s a non-zero complex number. This yields the
homogeneous coordinates [zo,...,zn] so, for example, the open set {zO # 0}
gives a typical coordinate patch under the map [zo,...,zn] *—(zalzl,...,
zalzn). By associating to a pgint (zo,...,zn+l) € ¢n+l - {0} the line
passing through it and the origin, we can view ¢P” as the space of lines

ntl

n
in € . (This is equivalent to compactifying € by adding an ideal point

n
at infinity for each line in €).

n
The protagonist of this chapter is a mild generalization of €P . We let

otk it

C (Cn+k) denote the space of k-dimensional linear subspaces of € H

- - 1y, ¢ ™ -
is called a Grassmann manifold or Grassmannian (see §1). Clearly, 1

n+k

", For projective geometers, Gk(m ) can be vicwed as the space of

tpk‘lrs in mw"+k”1, in the obvious way.
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In part, we hope to explain here the ubiquity of Grassmannians. They
rlay a decisive role in the study of complex vector hundles (§2) and, in
general, serve as an interesting and tractable class of examples for geome—
ters and topologists. The geometry of these spaces is faithfully reflected
in their cohomology. There are (at least) three different approaches to
nHgk

studying the cohomology of G (€7);  we work with complex coefficients.

In section 2, we consider the Grassmannian as a universal example (or
classifying space) for complex vector bundles. We associate algebraic invar-

lants to such bundles called Chern classes and, following Borel [12]
n+k

, COm—
pute the cohomology of Gk(c ) in terms of these Chern classes,

Section 3 exhibits a cell-decomposition of the Grassmannian and hence an
additive basis for the cohomology. This approach can boast the longest his—
tory going back to the enumerative geometry of Schubert 124]. We follow
Chern's presentation [24]. 1In particular, we give geometric proofs of the
Pleri formula and the Giambelld formula, the cornerstones of the Schubert
calculus.

The flag manifold and its cohomology is studied in section 4 with the help

of the Bruhat decomposition. In this way, the coinvariant algebra S (111,

W
§3) makes a reappearance.

We conclude in section 5 with a brief description of several other appro-

aches to interpreting the cohomology of Gk(Cn+k).

§1. PRELIMINARIES
We begin with some basic facts about the Grassmannian Gk(¢n+k).

Classically, these manifolds arose in differential geometry as a suitable

target for a Gauss map. By this we mean, iff M 4is a smooth, complex mani-
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fold of dimension k embedded in Cn+k, then the assignment x TxM(= the

+
tangent space of M at x € M) defines a continuous map M —+ Gk(Cn k).

This 1s a special case of a classifying map that we will discuss in §2.

n+k n+k) (resp. v (mn+k

(€

3?7 Let V(€
n+k, . k
denote the set of all k-tuples (xl,...,xk) € (¢ ) such that the entries

are linearly independent (resp. orthonormal), Vk(¢n+k) inherits the sub-
2
space topology from mnk+k

How do we topologlze the set Gk(c

and 1s called a Stiefel manifold. There is an

obvious projection p:Vk(Cn+k) - Gk(Cn+k) defined by mapping & k-tuple to

n+k

the span of its entries. We give the set Gk(C ) the quotient topology

n+k

and call it the Grassmannian. Since Gk(c ) 1is also a quotient of the

n+k
), the Grassmannian is compact. Before proceeding

compact space %L(t

further, we record

nt+k

(1.1) Lemma. Gk(¢ ) 1s a compact, complex manifcld of dimension nk.

n+k) is Hausdorff, we Separate points by a contin-

n+k),

Proof. To show Gk(C

n+k

uous function. If x € C , X € Gk(C let dx(X) denote the squared

n+k

distance from x to X. If X # X' € Gk(C ), pick x € X - X'. Then

d (X) =0, dX(X') # 0 and the assertion is proven.

n+k

Now suppose X ) and we want to find a neighborhood U analy-

n+k

0 € Gk(C

tically isomorphic to Gnk. We let U = {Y ¢ Gk(m ):¥ N Xa = 0}. Each

Y € U can be thought as the graph of a function fY:x0 - XS. This map
kn

Y » f, establishes an analytic isomorphism U =z Hom(XO,Xa) €.

We will usually assume k = n, since there is a natural identification

+
mHk n+k) given by X - X* (orthogornal complement).

n+k

Gk(C ) aaGn(G

) into complex projective space

€n+k

There is a canonical embedding of Gk(m

nt+k

N
("', where N = ( k ) - 1. 1In particular, G ) 1is a projective, com—

¢

plex algebraic variety. We can describe this Plicker embedding % explicitly.
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k, n+k

+
n k), then Akx is a 1line in A'C » hence a point 1 (X)

If X ¢ Gk(c
P(Akcn+k) = CPN. Hence, 1f X has a basis XyseensXys X 1is sent to
[x1 Aces A xk]. It is not hard to check that n 1s an embedding. Further-

n+k)) is the locus of a system of (2:?) quadratic

more, the image n(Gk(C
equations in the homogeneous coordinates of CPN (namely the equations th:
pick out the decomposable forms). In particular, the Grassmann manifold
G2(C4) yields (a very famous) non-singular quadric hypersurface in CPS.
These quadratic relations were first discovered by Grassmann in 1844. For

more on this fascinating geometry, see Griffiths and Harris [59, Ch. 6].

§2, CHERN CLASSES

If M 1is a complex manifold and TpM denotes its tangent space at p € M,
then we can "glue" all these complex vector spaces together into a new mani
fold: the tangent manifold TM. There is a projection map p:TM - M that
tells you where the tangent vector starts. This is the canonical example

of a complex vector bundle. TFormally

(2.1) Dpefinition. A complex vector bundle £ of dimension k over a

space X 1s a continuous surjection p:E + X whose Fibers pwl(X), x € X,
have the structure of a complex k-dimensional vector space and satisfies th
local triviality condition; i.e. every x € X has a neighborhood U and

-1

a homeomorphism h:U X Ek =+ p “(U) (local coordinate chart) which induces

a linear isomorphism {x} x Ck -+ p_l(x) for each x € U. A section of 7

is a map o:X =+ E satisfying peo = lx'

A vector bundle (with a typlcal section o) can be pictured as
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We refer to X as the base space and E as the total space of E. A
vector bundle is trivial if there is a global coordinate chart, i.e.
E =X x Gk. A vector bundle of dimension 1 1is called a line bundlie.
Notice that a section o to the tangent bundle p:TM -+ M 1is precisely a
vector field on the manifold M. A good reference for all of this material
is Husemoller [76, Ch. 3].

Let £ and £' be complex vector bundles over X and X', respecti-

vely. A map f:£ + &' is a commutative square
q

such that the map on fibers

£ 3P TG 26 7HE, )

is linear. 1In addition, 1f X = X', we insist £, = 1

2 X and drop the sub-

seript from fl.

SBuppose £ and &' are both bundles over a space X and £:Z - E£' ig

a map. When 1s f an isomorphism? One necessary and sufficient condition is:
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(2.2) remma. If f:ig + &' is a bundle map over X

£
E ——— F'
X

then f 1is an iscomorphism if and only if fx is a linear isomorphism for

each x ¢ X.

Proof. One direction is obvious since an inverse bundle map g:i4' - ¢
produces linear inverses 8, for each fx; x € X. TFor the other directiocn,
pick an open neighborhood U of x small enough so that there are local

coordinate charts for both p and p'

ux et 25 ptw

-1
It is not hard to see that it only remains to show that the map s “of "ot

_1‘

is obtained by glueing together all the fx s.

is continuous where f_l
Now the map tFlofos is given by a continuocus map of the form (x,u) =
(X,¢x(a)) where ¢ 1is a continuous map X 4—GL(Ck). Hence the map

s-lof_lot is given by (x,a) 4—(x,¢;1(a)) which is also continuous since

the operation of taking inverses is a continuous function of the matrix

entries,

Essentially, any natural operation that can be performed on vector spaces
can be extended functorially to vector bundles over the same base space. Tor
example, direct sum, tensor product, exterior power, etc. are all legitimate
methods of constructing new vector bundles out of o0ld ones. Another
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technique is '"pulling-back". Suppose £ 1is a vector bundle over X and
*
f£:Y - X 1s a continuous map. Then the pull-back bundle { (¥) has total

space

*
fE=YZE= {(y,e) € Y x E:f(y) = p(e)}
* "
and projection f (p)(y,e) =y onto the base space Y. We say

*
fE—~—m>> E

*
£ (p} m ]’P
N
X

Y T

is a pull-back square. The top horizontal map is projected onto the second
factor. We leave it as an exercise for the reader to check the local trivi-

ality condition. We now can invoke (2.2} to get a criterion for pull-backs.

{(2.3) Corollary. Suppose £ 1s a bundle over X, 7T a bundle over Y and
*
f:Y X a continuous map. Then 7 a5 £ (¢} i1if and only i1f there is a bun-

dle map wu:m + & such that the map u, on total spaces gives a linear iso-

morphism on each fiber.

Proof, The necessity of the condition is easy to check. For the converse,

we have the diagram

u
F—t E
' \\ '
| '\J / !
E * i
| f E !
v L
Yy -————— X

Y2

It suffices to show that the dotted map is an isomorphism and this follows

from (2.2).
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v Our main goal 1s to show that every complex vector bundle over a compact
space arises ss the pull-back of a certain canonical bundle over the Grassma

nian. We describe this bundle now. Define a total space Ek n consisting
3

n+k

of pairs (V,x) where x € V and V ¢ Gk(C }. The projection map

n+k

p:(V,x) » V defines a map Ek + G (€ ") and a complex k-dimensicnal

,0 k
. +
vector bundle over Gk(c“ k

nt+k

), called the universal bundle £k a’ Since
3

n+k n+k

Gk(c ) Q;Gn(w ) there is also a bundle En,k over Gk(G Y and the

direct sum E K & F is the trivial bundle. It remains to check:
b

k,n
(2.4) Lemma. The projection p is locally trivial.

n+k) and U the open set containing it described

1

Proof. Let XO € Gk(¢

in (1.1). We define a local coordinate chart U x X, ~ p (U by (¥,)

(Y,(a,fY(a))), in the notation of (1.1). The picture is:

>

Y

| Ma, gy a))

/_c'c %o
|

|

where Gn+k = XO & Xs. Clearly this works.

If £ 1s a k-dimensional bundle over X and f 1is a map satisfying
* e
E=f (gk n)’ for some large enough n, we will call { a classifying
’
map for £. We will show that if X is compact, such maps always exist.

The first reduction is
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(2.5) Proposition. If E is the total space of £ and F:E *_mn+k is a

continuous map that gives a linear isomorphism on each fiber, then there

exis®e a classifying map for k.

¥

Proof. We use F to construct a bundle map & & gk a by Vy(e) =
b4

(F(fiber through e), F(e)). By the assumption on F and (2.3) we get

e, )
¥ (5k,n .
Hence it remains to prove

(2.6) Theorem. If E 1s a complex vector bundle of dimension Lk over a
compact space X, then there is a map F:E - Cn+k, for n 1large enough,

as in (2.5).

Proof. By compactness, choose a finite cover U

1,...,Um with local
k -1 :
coordinate charts hi:Ui xC +p (Ui). Choose a partition of unity {ni}
subordinate to the cover {Ui} with n;l(O,l] < Ui' Define

g=LgE~>LC
1 i

-1 -1
by 81|P (Ui) = (ﬂip)°(P2hi ) (where P,yiUy X c® a—Ck is projection on

the second factor) and zero o;herwise. We leave it to the reader to check

that g satisfies the condition of (2.5).
Hence, we can now conclude

(2.7) rTheorem. Every k-dimensional complex vector bundle &£ over a compact

n+k

*
space X 1is of the form f (gk n) for some map f:X > G (¢ ), for n
3

"
large enough.

Proof. Combine (2.5) and (2.6),
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In particular, when ¥ is the complex tangent bundle of a complex mani-
fold M, the classifying map f 1is the Gauss map of an embedding of f
in GN, N large enough. Clearly, (2.7) indicates the decisive role that
the Grassmannian plays as a "universal" space in the theory of vector bundle
Furthermore, one can prove that f*(ik,n) is isomorphic to g*(gk'n) if an
only if f and g are homotopilc maps (see Husemoller [ 76 , p. 29-32]).
These are the beginnings of topological K-theory.

How does the theory of complex vector bundles produce cohomological infor

n+k

mation about Gk(¢ }? In general, if £ 1s a complex vector hundle of

dimension k we can assoclate to it cohomological invariants called chern

classes ci(g) € HZi(B;Z), 1 =1 < k. These clasgses satisfy:

(C1) (Pull-backs) If E 1s a vector bundle over X and f:¥ » X is a

continuous map, then
* *
e (£ () = £ (e ()
(€2) (Whitney sum) Tf c(£) = 1+ c (E) + cp(E) +-++ € B (B;Z) 1is the tota
Chern class of £ then
c(E ®n) = c(E)rcln)

(where the multiplication on the right is cup~product).

n
(€3) (Non-triviality) 1f £ is the canonical bundle over ¢F  then

’l,n
0# ¢, ( ) ¢ n (™ 7)
C1 E1,n ’

Indeed, these axioms characterize the Chern classes. This is simple to

prove once one knows the following easy consequence of the Projective Bun-—

dle theorem [ 62 ,p. 430 1.
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(2.8) Theorem. (Splitting). If £ 1s a complex vector bundle over a com-
pact space X, then there 1s a map f:Y -~ X so that
x % *
(a) £ :H (X,3) - H (¥,2) is a monomorphism and

" .
(b £ () 1s a sum of line bundles.

Now the argument for the uniqueness qf the Chern classes goes like this.
Use (2.8), (Cl) and (C2) to reduce the question to one concerning line bun-

dles. If X 1is a line bundle, use (2.,7) to choose a classifying

n+l n

£:X + 6 (™) = €% But then ¢ () = cl(f*(gl’n)) - f*(cl(al,n)), 50

it 1s determined by (C3).

Of course, it still remsins to construct classes ci(E) satisfying the
axioms. This can be done in an abstract way using the Projective Bundle
theorem [ 62 , pp. 429 ). Historically though, these classes arose as
obstructions to extending a section of the vector bundle over 1argér skeleta.

In the tangent bundle situation, this amounts to constructing a vector field

¢
.

on the manifold.

Let us write ey for ci(gk,n)’ 1 =1i=<k, and ey for Cj(gn,k)’

l = 3 = n. Recall £ p @ gn k" 1, so by (C2) we get
] ’

1 teeete ) =1

(*) 1+ ¢ ++ clt'ﬁ(l + 'él

Furthermore, Borel [ 12) has proven that these are the only relations;

1amely

* n+k _ - -
H (G, (€7);2) = Blepsennseystysennne VI

vhere In,k is the ideal generated by the homogeneous parts of (*). We call
his the Borei picture of the cohomology. Indeed, the first n homogeneous
rarts of (*) allow one to solve for Ej as a polynomial in the

2
2. 8. c, = C; ~ Cye Suppose now that the remaining k relations among the

cl,...,cn;

06

' SRS J . Then it 1s shown in [ 65, App.] that these rela-
i 1,n k,n

tions are given by the first column of

c, 8 are

+1
<y 1 o\ "
<, '-_
: 1
ko 0

n+k

*
Hence we can write H (Gk(C );2) = z[cl""’ck]/(fl,n""'f Y. (The

k,n
proof is via high-school algebra). The reader should write down some exam—
ples with k = 2, n small, to get a feeling for these relations.

In §4 we will obtain a different way of thinking about Borel's computation

§3. SCHUBERT CALCULUS
The Schubert calculus was invented a century ago by H. Schubert and canon-
ized in his book "Kalkiil der Abz#hlenden Geometrie" published in 1879. The
subject of enumerative geometry that Schubert pioneered is concerned with
counting various geometric configurations in GP3, and only later in 1886
did he systematically considér questions in higher dimensions. For example,
Schubert claims that there are 666,841,048 quadric surfaces tangent to 9
given quadric surfaces in ¢P3. According to Kleiman [85], it is not clear
whether this number or the method it is based on are completely sound, In-
deed, cleaning up such confusion is the intent of Hilbert's 15th Problem.
(For more on Schubert's work, see the fine surveys [ 84), [85] and [5%, Ch. 6
Fortunately, the foundations of the Schubert calculus have been secured
for problems involving linear subspaces. The first such attempt at a rigor-
our treatment of the linear Schubert program was suggested by van der Waerder

Il54] and proceeded by expleiting the recent intersection theory of l.efschetz
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This was then done in a systematic geometric way by Ehresmamn [44] by con-
structing explicit cell-decompositions of many complex algebraic varieties,
including the Grassmann manifold. Further information concerniﬁg the mutual
disposition of the cells was previded by the ﬁork of Hodge [70] and Todd.
We will take the algebraic point of view that a Schubert calculus for a

* .
graded algebra H , in general, consists of three basic ingredients:

*
(3.0 1) Basis Theorem. A linear basis of Schubert classes {Zw} for H
and a collection of classes {Ys} (called special classes), that algebrai-

*
cally generate H .

(3.0 11) Pieri formula. A formula that describes the multiplication of

Schubert classes by special classes:

W
Z .Y = ;
4 %- cw,s zw,

(3.0 iii) CGiambelli formula. A formula that expresses each Schubert class.

Zw as a polyncmial in the speéial classes {YS}.

We begin with the easiest example. There is a simple geometric cell-

decomposition of the projective spaces ep” = Gl(c"+1). Namely, let

E)

O< V, <o« ¥V <« En+1
1 n

be a fixed flag and define

<i>={¢£ e ecP™ecv _,t ¢ v}

i+1°

Each «i> 1is homeomorphic to an open 2i-cell e21. For example,

<l> = {£ € ¢¥™:¢ C Vyrt ¢V}
= {f C Vs L # Vl}
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2
=CP1-{V1}R552—{V1}%5%8 .

As 1s well-known, we can take the <i»'s for the Schubert classes and <1

as the single special class.

+k
We will mimick this construction for the Grassmann manifold Gk(c“ ).

The only real difference is that one requires a slightly more complicated
scheme of bookkeeping. The basic combinatorial object is a sequence of inte-

gers 0 = ay Seers a) < n, We then define:

otk

<Bpseeesd> T (X ¢ Gk(lﬂ ): dim(X N Vai+1) i}

ntk
vhere, as above, 0 < V, <ere<V <€

n+ic

is a fixed reference flag.

Suppose X € Gk(c ). Then consider the intersections

0< XN Vl < XN V2 <o XN Vn+k-1 < X

Clearly, each step in this chain can increase the dimension by at most one
and there are exactly k "jumps" in order to get all of X. Let

dl,...,dk be these jump points i.e.
d -1 d

1y231-1 daim@xned

dim(X N € = i,

Then we will write X € <dl—1,...,dk—k>. (We could just as easlily have

usdd a notation based on the di‘s, as we will do later, but for the moment

the modified sequence of ai's. a, =d; -1, 1s more convenient).

We claim now that the set <Byseeesdy > is homeomcrphic to a cell of dim-

ension Zz:ai. We proceed by representing a k-plane X in <Bpyeeady by
a k x (ntk) matrix, the rows of which span X.
a1+1 a1+1
Firstly, dim{X N € Yy =1, so we can pick a vy cexXxne and
a. +2
2
insist v, -e = 1 to make it uni¢que. Then, we choose v, ¢ X1 €
1 al+1 2
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satisfying v2.ea2+2 = 1 and v2'eal+l = 0. Continuing in this fashion we
get a matrix of the form

LTI | 0 .« e . 0

X o o a0k k] @ v e 0 \

e e o 0% e o o KOk oo okl 0o ..g !

vhere the (i,3)th entry is zero, for j > a, + 1. It only remains to count
how many *'s appear to determine the dimension. The ith row contains

k
a; 80 we get <81s+..3,> 1s complex (i§lai)—space.

It is possible to show that the closure [al,....ak] = <8),...,8,> is the

k)

Hence

union of all "smaller" <b1,...,bk>, i.e, [al,...,ak] = | <bl,...,b

b, > satisfies b, < a

where <bl,..., K ‘ o

for all 1, 1 =<1 = k.

+ky
(aseena,] = (X ¢ Gk(u:n YidimlX N Vai+i) > 1}

n+k

Each [al,...,ak] determines a homology class in Gk(C ) and we have

(3.1) Basis Theorem. The integral homelogy H*(Gk(cn+k),29 is freely
. k
generated by the homology clasges [al,...,ak] of dimension 2 7 a .
i=1

Proof. We need only observe that since all these chains are even-dimen~

sional they are all cycles and there are no boundaries to worry over.

We now come to a few remarks,

(3.2) The class [al,...,ak] does not depend on the choice of the refer-

ence flag, since all flags can be moved to the standard one by a continuous

automorphism of ¢n+k.
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27a ntky o ntk,
(3.3) We let (al,...,ak) ¢ H i(ck(c Y;2) =g Hom(szai(Gk(C Y, %)

assign 1 to [al,...,ak] and zero otherwise. (We are, of course, using

the freeness assertion of (3.1)). Then the Chern classes and the nermal

Chern classes can be identified as specific Schubert classes (al,....uk).

Namely,
c = (0,...,0,1,.0.,1) 1=i=<Kk
1 M —
1
< = 130,...,0,1) 1<4=n

The normal Chern classes Ej play an important role in the Schubert calcu-

lus and so are often called sPeciél Schubert classes (cf. (3.0 i) and (3.7)).

(3.4) There is an intersection pairing

nt+k n+k ntk

-+ H (G, (¢ )
H2nk—x1(ck(m ) x Han-xz(Gk(c » 2nk—(x1+x2) k

where we write o+p (the Z coefficients are assumed), It is dual to the

* ntk, .
ordinary cup-product in the cohomology ring H (Gk(c )@ .

[a in

Finally, let us take a concrete look at the classes l,..-,ﬂk]

(3.5)
a simple example. The first case that is not a projective space is

4 ges fa-
X =n= 2, the space GZ(CA) of complex 2-planes in €, The Hassc dia

gram of the partial order of Schubert classes is:

?[2,2]

i1,2]
[0,2] i1,1]

[0,1]

®10,0]



Clearly, [2,2] = GZ(C4), and [0,0) 1s & point determined by the choice

of V., 1n the standard flag

2

0=« V, <V, <V, < 04

1 2 3

Similarly,

[1,2] = {X:dim(X N v2) z 1}

[1,1] = {X:X ¢ v3}

[0,2] = {x:v1 c X}

[Q,1] = {x:vl cXc v3}

The main goal of this section is to give a geometric description of the

*
multiplicative structure of H (Gk(Cn+k);Z). The dual of the Basis Theorem

gives us additive generators (al,...,ak) and 1t suffices to compute the
coefficients in a linear expression for (al,...,ak) U (bl""’bk)'
It suffices to prove the following two résults (cf. (3.0 1, 1i)).
{3.6) Pieri formula, (al,...,ak)'Ej = Z (bl,...,bk) [116]
a,<b_ =a

1771774+
Zbi=j+2ai

(3.7) Giambelli formula. (al;...,ak) = det(c )) with the convention

ai+(j—i
that Eg =0, 1if £ 1is not between 0 and n. (57]

This is the Schubert picture of the cohomology. We begin with the fol-
lowing useful remark.

(3.8) Proposition., If [al,...,ak]'[bl,...,bk] # 0, then bi+ a4+l > n.

Proof. 1If bi+ a. n, then

k-1+1 <

—_ = +
(bi+ 1) + ak—i+1+ k-i+1 bi+ 8 _i+1 k+1
< ntk+l
so we can find subspaces V, W of €n+k of dimensions bi+ i, 8 _ 141 +

k-i+1 respectively so that VN W = 0. We extend these to flags {Vi},

{Wi} for [bl,...,bk], [al,...,ak] respectively.

'[bl,...,bk] then

dim(X N V) >

v
b

and dim(X N W) -1i+1

A"
=

=
]

so that 0# (XNV)N EKNW VAN

the proof.

Now,

if X ¢ [al,...,ak]

0, a contradiction. This completes

This allows us to compute the intersection product for cycles in comple-

mentary dimensions.

k
(3.9) corollary. 1f 7 (ai
i=1

then bi =n-a -

Proof. By (3- 7); bi+ ak—i+1 =

+ bi) = nk and [al,...,ak]-[b

In this case, the product 1s 1.

1""’bk] # 0

n. Since summing over i on the left

gives nk, each of these inequalities must be equalities. The last asser-

tion is clear.

It is now possible to explicitly identify the Poincare’ duality isomor-

phism for the Grassmann manlfold.

, +k
(3.10) corollary. The Poincare map H, (G (c"
ZZai k

sends [al,...,ak] to (n—ak,...,n—al).

)»2)

R Hznk—ZZai(Gk(¢n+k);Z}

proof. This follows from (3.9) and the observation that the Poincare’map

is the adjoint to the intersection pairing
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Hoso G, (¢

22 1

Qur approach t

homology. By (3.

[n—ak

where the bi's

(3-6') [bl, e ,bk]' [‘n"ak: con ,n"a]_]' [n~-j,n,... »n] = 10

We first analyze the simple product: [bl""’

first result is

(3.11) Lemma. I O # [by,.cosby)elnay,..ynma)l, chen ay

all 1.

Procf. By (3

Following Chern [26], we pick convenient reference f

[bl""’bk] and [n-ak,...,n-al].

of the proof. We will write the coordinates of ¢ as

yl,...,yn. Let

equations
|

and let W be

i

We also define
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gor e ,n“al] [n-j sTlys e )n] ='Z[n—bk! L !n—bl]

i+l .4

n+k

n+k n+k
D X By pga G(E ) Hg(GETD) T

o the Pieri formula will be to attack the dual statement in

10), (3.6) dualizes to

are as in (3.6). So by (3.9), it suffices to show

[1 if the by's are as
in (3.6)
otherwise

bk]'{n-ak,...,n—al]. The

=b for

i’

.8), bi + (n—ai) > n, and we are done.

lags for the cells

These will be fixed for the remainder

+Hk
xl,...,xk.

V1 be the subspace of dimension bi+ i given by the

=ssem x'k.—i = (Q = ybi+]_ = e= yn =

the subspace of dimension n—ak_i+1+ i given by

Teaem X, = 0 = yl =eesz= yak—i+l

Mj = Vi n wk_i+1, whose non-zero coordinates are easily

checked to be {xk—i+1’yai+1""’yb }. Hence Mi has dimension bi— a,+ 1]
1 i

Recall, that a k-dimensional subspace X can be viewed as a certain

k x (n+k) matrix of row rank k. Let A = Ck and view the column vectors

gi,...,gk, nl,...,nn as elements of A. Clearly they generate A, since

column rank equals row rank. Using this idea we prove:

(3.12) Proposition. If X ¢ [bl,...,bk]'[n-ak,...,n-al], then X ¢ M,

the span of the subspaces Mi'

Proof. By definition, dim(X N Vi) > i and dim(X N Wk-i) =k - i.
These facts imply gl,...,gk_i, qbi+l""’hn span a k - 1 dimensional
subspace of A and Ek—i+l""’gk’ nl""’na1+1 span an i-dimensional sub-

space of A. If they intersect in A, then together they span a space of

=k -1, So if b, < a

g < 834 then

dimension a contradiction.

= 0'
i+l
are necessarily zero.

So all the coordinates "outside" of M,,

i (if any)

TI =<l.='r]
bt+l a

This completes the proof.

We can now show that 1f the bi's are not properly "interlaced" ameng

the ai's then the triple intersection product vanishes.
(3.13) rLemma. If bi > a5y for some 1, then
[bl,...,bk]-[a—ak,...,n-al]-[n—j,n,...,n] = 0.
Proof. By above remarks concerning the Mi's,
k
dim() = - =
m(M) Z_l + (b~ a) = k+j.

i=1
B .
ut the inequality bi SR PR implies that Mi n Mi+l # 0, so actually
dim(M) < k+j. Hence it is possible to choose a subspace H of ank of

dimension n - § + 1 satisfying HN M= 0.



If we choose an X € [bl,...,bk]'[n—ak,...,n-al]

Hence X NMHcMMNH=0,

and only if dim(X N H) = 1. So we are done.

It only remains to prove

then X < M,

by (3.12).

But it is easy to see that X € [n-j,n,...,n] if

(3.14) remma. If (bl""’bk) satisfies the conditions of (3.6) then

J

[bl,...,bk]'[n—ak,...,n—all-[n—j,n,...,n] = 1.
Proof. Now we have equality: dim M = ki+j,
i# 3. Let H be the

8y

y E'lcﬂy =0
+1 bi

1l=1=k%k

M M
*1
for some choice of Xi # 0. Clearly, H N ¥ ‘s the line x
1

since all the y-coordinates vanish. Now, 1f X ¢ [bl,.

..,bk]-[n—a

since M1 nM, =0,

if

(n-j+1)-dimensional subspace given by the equations:

*x

K;’

K

it is the usual argument tc see dim(X f Mi) » 1, so we can choose vectors

vy € XN Mi’

lock like

l1=1=k,

x, ()

If cas *[n=~ e
X € [byy..eyb 10 [n-a,,

since

X H 4is contained in the
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to serve as a basis for X.

,n—al]'[n-j,n,...

}O Oyal+1 yblo O
|

%() L () ya +2 ter yb(j ()
| 2 2

|
|

,n], then

line M N H,

The matrix for

dim{(X N H) = 1 but

1t must actually be that line.

an“al]

X will

(Xl,...,Kk,O,...,O) € X.

ul,...,uk € € such that

In particular, So there exist numbers

A = = =
1 uixi 1 i k

- <k = =1=
0 HyYy ai+ 12kZb 1 1=k

Hence, all the yk's are zero and we conclude X can only be the space

generated by the first n coordinate vectors.

This completes the proof of the Pieri formula. Somewhat curiously, it
turns out that the Giambelli formula (3.7) is a consequence of the Pieri for-

mula.

Proof of (3.7) . Let A denote the right-hand side. Expand the deter-
minant A along the first column. Hence
k
1+]1-
A= 121 (-1) Cai+i-1(al_l""’ai-l 1, ai+l""’ak)

Applying (3.6) to each summand almost every term cancels excepts the desired

one (al,...,ak), (The reader 1s urged to check this in detail for himself).

Example. (a) We conclude this section with some typilcal computations in

the Schubert calculus. Suppose we are working in the (real) 18-dimensional

manifold G3(C6) and want to square (0,1,2) € H6. First we apply (3.7) and

get

(0,1,2) = det

< 0l
Nt Nl O
w
Nl = ©

]

ni

01

|

2]

Then we invoke (3.6) and compute
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(.0,1.2)El (1,1,2) + (0,2,2) + (0,1,3)
(1,1,2)E2 = (1,2,3)

(0,2,2)62 = (2,2,2) + (1,2,3)

(0,1,3)c, = (1,2,3) + (0,3,3)

(0,1,2)33 (1,2,3)

Hence, (0,1,2)% = 2(1,2,3) + (2,2,2) + (0,3,3).

(b) Suppose we consider now Gz(m4) as in (3.5). We think projectively
for the moment and view this space as the set of complex uPl's in GPB.
The enumerative geometry of Schubert interprets the four-fold product of
(0,1) as counting the numbers of lines that meet four lines in GP3 in

general position. We can compute

©,1% = 0,2) + 1,1
0,103 = 2¢2,2)

©,1" = 2(2,2)

So the answer is 2, (See [84],[85],[59] for other geometric examples' and

also the latter for an alternative approach to the Pieri formula).

§4. FLAG MANIFOLDS .

A sequence of subspaces of Gm, 0 < Vl <t 1
m—

is called a (complete) flag. The set of all such flags is denoted Flag(mm).

< Gm, where dim(Vi) =1,

We can equ;p this set with a topology in a manner similar to that used for

the Grassmannian. We leave these details to the reader. Similarly, one can
m

also show Flag(C) is a compact, complex manifold of dimension EL%:ll .

The dimension assertion follows, for example, by induction and the existence

of an obvious fibration
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P__ -
m 1> c (cm) ~ ch 1
m—1

Flag (@™ 1) —Flag (€™

Indeed, the map Pr-1 is a special case of the projection maps

n+k, Pk n+k

Flag(€C ) — Gk(d: )

where Py :(Vl aee< Vm_l)'+ Vk' Cohomologically, the map p is very well-
behaved. It induces an injection

n+k ntk

priH e, (€9) + B (Flag (™)

and we will have more to say about this later.

As 1s the case with the cohomology of Gk(¢n+k), the cohomology of
Flag{cm) admits two different descriptions - a Borel picture (cf. §2) and a
Schubert picture (cf. §3). We will consider both of them in this section.

It is convenient at this stage to introduce an alternative description of

the flag manifold as a homogeneous space. There is a transitive action of

GL_(£) on Flag(€™). Namely, if

0<Vy <<V )< ”

is a flag and g ¢ GLm(€) then

m m
g (0 < Vl <o Vm_l <€) =0< ng <o ng_l < €

The stabilizer of the standard flag is precisely the subgroup B of upper

triangular matrices:

*
.
.
*

O
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Hence we obtain an identification
m
GLm(C)/B ~ Flag(€ )

1f instead we consider the action of the (maximal compact) unitary group

U (¢), we get an identification
m
n
Um(C)/T ~ Flag(C)

where T 1s the subgroup of diagonal matrices:

. O\

o

The advantage of the homogeneous space point of view is the natural ex-
tension of our problem to any complex semisimple Lie group G. Our B is
replaced by a Borel subgroup, i.e. a maxiﬁal’solvable connected subgroup,
Um(c) by a maximal compact subgroup K and T by a maximal torus. In

this general case there is a homeomorphism
KIT ~ G/B

We will refer to either of these spaces as a (generalized) flag manifold.
We recall that the Weyl group W of K 1is defined as N(T)/T, where N
denotes normalizer. The Borel pilcture of the cohomology of a flag manifold
is summarized in the following omnibus result. This is the promised geome-

tric interpretation of the coinvariant algebra.

*
(4.1) Theorem. (Borel) There is a map <¢:5(V) = H (G/B) (that multiplies

degree by 2), where V = (¢ ®3 X(T), the (complexified) character group
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on T, that induces an isomorphism:
s s/ *(6/
w = SOW/I, ~ 1 (6/B)

The map € 1is obtained on degree 1 by assoclating to a character X
of T the first Chern class of the corresponding line bundle Lx over
K/T = G/B.

On the other hand, there is alsc a Schubert~type cell-decomposition of
the flag manifold. In the case of G = GLm, we can work either in terms of
Flag(wm) or G/B. We describe here both the geometric and algehraic pic-
ture in this speclal case and show how they are, in fact, identical.

We begin with the Schubert-type cells in Flag(tm). If X 1is a k-plane
in Cm, we will define (cf. §3) the signature of X to be s(X) =
(dl <on e dk) where the di are the "jump-points" for X, i.e.

d,-1 d

$xnel

If V, €¢sex ¥

1 m—1 is a flag we get a triangular array of signatures

S(Vl) =d

H
(="
A
[=1

s(Vy) =dy; < dy,
(4.1%)

dgy < dgy < dyq

S(V3)

sV p)=dy < g g <0< ¢

m~1 m-1

The following remark allows us to simplify this bulky notation.

(4.2) ZLemma. If VS V' S @', then s(V) € s(V').
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proof. If 1 € s(V), we get a short exact sequence
i-1 i ith coordinate
o—>v e — v Ne - g —>0
N 0 ‘ i

—_—

0 —> v'n ¢t —s y'n o

An easy diagram-chase shows the bottom sequence is also exact, so i € s(v").

Hence, as one goes down the rows in (4.1%) exactly one new number is

added at each stage, so we get a sequence dll’d212""'dmrl imw of num-

1

bers between 1 and m., If we throw the remaining number at the end we get

We then define the signature o of a flag

n+k
F= (V1 <o Vm-l) by o(F) = w. Finally, in analogy to Gk(c

a permutation w € Zm-

), we

can define a Bruhat cell to be
B, = {F € Flag(c™):0(F) = w}
The closure of such a cell is the Schube?k Qariety
B, = {F ¢ Flag(€™) :o(F) = w}

where < 1s interpreted as the Bruhat order(l, $6) on the Coxeter group

Zm! In other words,

B = Us ,
W e, ¥

The fundamental classes of the Schubert varileties Ew give homology

classes Xw for G/B. These then yield Schubert cohomology classes
*
Xw €H (Flag(cm);z) of dimension 2£(w), where ¢ 1s the length function
on Z_!
m
G an arbitrary

In order to describe the Bruhat decomposition for G/B,

reductive group we need some notation. Fix a maximal torus T and a Borel
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subgroup B 2 T. There is always another Borel subgroup B opposite to

B satisfying BN B =T. -
ying T. If G GLm(C) and B 1s the upper triangular

matrices then B is the lower triangular matrices. There 1s also a decom

i
position of an arbitrary Borel B = UT where U 1s the "unipotent"” ele-

ments of B. If B 1is the upper triangular matrices, U consists of upper

triangular matrices with 1's along the diagonal

We also write B = U T and define

- - -1
UL =N

The main algebraic result is (see [14, p. 347]).

(4.3) Theorem. (Bruhat decomposition [21]). If G 4s a complex reduc-

tive Lie group and T € B, as above, then G 18 the disjoint union of

double cosets BwB, w € W. (This double coset is actually BnB, where

n € N(T) represents w. This is well-defined since T € B). In addition,

there is an isomorphism of algebraic varieties

Uw x B - BwB

Remark, Tits [153 has shown that the Bruhat decomposition is a formal con—

sequence of the axioms for a BN-pair structure om a group. This is the
most elegant and clean approach.

Dividing out by B and recalling B = UT yilelds:
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(4.4) Corollary, The homogeneous space G/B 1s a disjoint union of double
cosets BwB/B, w € W, and there are isomorphisms of algebraic varieties

- ¢
BuB/B % U € o)

We will show that BwB/B = Bw under the identification G/B ~ Flag(c™).
This will show that the Schubert varieties are identical since the closure
in the Zariski or classical topology agree. .We begin by proving the Bruhat
decomposition in the special case G = GLm(E) in order to make the state-

ment of (4.3) more concrete.

(4.5) Proposition, Every matrix a € GLm(C) can be written as a product

BleZ’ where Bi are upper triangular and w is a permutation matrix.

Proof. We can multiply the matrix a on the right by appropriate pro-
ducts of upper triangular unipotents U {elementary row operations) to
maximize the number of zeros in each row: The number of zeros at the
beginning of each row must be distinct by our maximal assertion. Now we
can multiply by a permutation matrix P so that alP =P € B; so

a = BP-lU:1 as claimed.

It remains to show: ¢

(4.6) Proposition, If P., P, are permutation matrices and BP,B = BPZB

1* "2

then Pl = P2.

Proof, We can choose P,B' € B such that

= ]
Py = PRpP
80 P—lﬁ-lP is upper triangular If o, € 2 corresponds to P
1 2 -t i m i’
" -l = -
i 1,2, then (Pl )i,j [d] . (PZ)i,j 607(1),j and, say,

-1 .
o) (1),7
124

Y, =t

1, 1,§° Hence, 1f 1 >}

t _ _ =0
ot (), (1)

-1 -1
Hence 01 (1) ¢ 9, (i}, for all 1 > j (since the diagonal entries of

1
)] are non-zero). But reversing the roles of o) and o, in the above

argument, we have
-1 -1
ol (1) # 0, (1)

f 11 1 . = =
or a # 3. Hence o, =9, and P1 PZ.

Hence, we have proven the Bruhat decomposition of GLm(E). Furthermore,

we observe that:
(4.7) Proposition, dimc(U;) = ), for w€Z.
Proof, Recall, that

tw) = {1 < §)iw(@) > w(§)}
It is easy to compute that the (i,j)th entry of WU—W-l is

S (d),w(3)’

where ( ) =U . Hence, if 1 < j, then the (i,j)th entry is non-

t
i,]
zero only if w(i) > w(j), since elements of U are lower triangular.

Hence, when we intersect with U, we find there are £&(w) coordinates

that are non~-trivial.

Now under the identification G/B x Flag(C") the trivial coset Xy

goes to the standard flag S. To show that wao and Xw correspond, it
suffices to observe
1. If S denotes the standard flag, then o(ws) = w.

2. If F is a flag, and [ € B, then o{BF) = o(¥F).



We leave the verification of these facts as an easy exercise for the

reader.

n+k

ntk
We have mentioned that the natural projection map pk:Flag(w )~ Gk(c )

induces an injective map on cohomology. This is actually a special case of

a more general Lie-thecretic phenomenon. We explain this now.

Recall from (I, §5) that W denotes the parabolic subgroup of a Coxeter

6 of §. There is a parallel notion

group (W,S) generated by a subset

for semi-simple Lie groups G. A subgroup P of G 1s called a parabolic

{f P contains a conjugate of a Borel subgroup. The following result is

basic.

(4.8) Theorem. ([14,p. 29]). Every parabelic in G is conjugate to some

Pg = BWgB, 8 C S,

These Pe's are often called standard parabolics; clearly P¢ = B,

Pg = G.

Example. Let G = GL , so that W=3Z, § -{sl.-.-,sm_l} as in (I, 1.3a).

If e-{si,...,si}cs, then

1 X
oL » *
4
oL

1.1

P, = 21
L] . *

O ‘
Oy

In particular, 1f © = {sk} one obtains a maximal parabolic

GLk

*
x (:)GL“'R
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Since the isotropy group of a k-plane is P, we can identify the Grassman-

k

nian as a homogeneous space

n+k

G /Pk —> G, (¢

X )

Ln+k

We now record
(4.9) Theorem. The natural projection ﬂe:G/B -+ G/Pe induces a surjection

() B, (G/B)—>>H, (G/P,)

and an injection
* ok *
ﬁe:H (G/Pe)>——» H (G/B)

Proof, See [ 6, Thm. 5.5].

Geometrically, it is not difficult to see what is going on. The B-orbits
in G/Pe are obtained by collapsing together B-orbits BwB/B in G/B if

their w's 1lie in the same left We— coset. These new B-orbits are a cell-

decomposition for G/PG' The cells are now indexed by the minimal length
left coset representatives of W9 in W; namely we (cf. I, §5). We

return to this idea in 1V, $§4.

§5. COMPLEMENTS

We briefly describe (another) four ways of thinking about the cohomology of

n+k
Gk(c ). Three of these approaches involve different points of view on

cohomology altogether; De Rham cohomology (5.1), Lie algebra cochomology (5.2)

n+k

*
and the Chow ring (5.3). The fourth ties up H (ck(c )) with a classical

treatment of symmetric functions due to Jacobi (5.4). We make no claim of

127



doing justice to any of these subjects and heartily encourage the interes-
ted reader to pursue the suggested references for the complete story. We

offer propaganda for (5.3) and return to it in Chapter V.

(5.1) Suppose X 1is a complex manifold. Let {GP(X),dP} be the de Rham
complex of holomorphic differential p-forms on X; d? the exterior deri-

vative of forms. There is a de Rham map
* *
D:7 (X) - C (X}
*
where C (X) denotes the usual cochain complex on X. It is given by

D@)(0) = f o

where o € aP(X) and o € Cp(x). (The fact that D is a chain map is a
generalization of the fundamental theorem of calculus). De Rham's theorem
asserts that D induces an isomorphism on homology, in particular a coho-
mology class can be thought of as a differemtial form. The cup product of
cohomology classes correspoends to the wedge product of differential forms.
Stoll's monograph [15Q systematically develops the cohomology of Gk(Cn+k)
from this point of view. The Schubert classes are identified with explicit
differential forms. Stoll exploits a notion of fiber integration on singu-
lar varieties to prove the Piefi formula (3.6) (see [150, Ch. 7]). An inter-

esting application is then developed concerning the "Schubert zeros" of sec—

tions of holomorphic vector bundles (cf. [18]).

n+k) (and a large class

(5.2) Kostant [88] describes the cohomology of Gk(c
of other homogeneous spaces G/H) 1in terms of certain Lie algebra (co-)homo-
logy groups. We restrict ourselves here to the case of the flag manifold

G/B. The idea is roughly analogous to (5.1) in that the Schubert classes

are pinned down by certain differential forms. But, Kostant identifies
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these forms in terms of the homology of the nilradical n»n= LZie(U).
(Lie(G) denotes the Lie algebra of G).

Firstly, by the van Est theorem, one can identify H*(G/B) with the
relative Lie algebra cohomology group H*(g,b). The corresponding cochain
complex can be thought of as the K-invariant complex differential forms on
G/B. (K 1is a maximal compact form of G that provides a *-operation on

g). It is shown [88 , Thm. 4.5] that there is an isomorphism
* *
*) (B, (1) ® H,(n)) = H (g,b)

where h 1s the Cartan subalgebra b/n. 1In an earlier paper, Kostant com-
puted the irreducible components of H*(n)h and they are Indexed by w € W,
These components determine a basis {sw} for the left-hand side of (*).
Kostant also picks out a "harmonic'" representative for each 8, with res-
pect to a sultable Laplacian. Finally, it is shown [88 , Thm. 6.15] that
S, is precisely a scalar multiple of the Schubert class Xw' An integral
formula 1s given for this scalar, though an explicit formula is available
now [ 86 , p. 357); e.g. for w = 8., 1t 1s simply 2(a,a)-l. Koch [86]
has further studied the multiplication of Schubert cycles from this point

of view.

(5.3) 1t was pointed out in §3 that cup-product in cohomology is dual to
intersection product in homology. If X 1is a non-singular projective var-
iety over an algebraically closed field k (not necessarily of character-
istic zero) one can form the Chow (or intersection) ring A*(X) [29]. The
group Ap(x) consists of formal linear combinations of irreducible codimen-
slon p subvarieties of X modulo raticnal equivalence (cf. [02 ,p. 426]).

In particular, Al(x) is the Picard group of divisor classes. Intersecting



subvarieties (after they have been moved into general position) induces a

product

AP @ a%x) - AP )

%
This is the ring structure cn A {(X). Now suppose X = G/B. The Bruhat
decomposition still goes through over k. Let X w denote the subvariety

B B/Bw (this is just Poincard duzlity, cf. (IV, 2.9 )). Since the dim

A OW

¢
ension of X is é(ww) = 8(w,) - &(w), X €A (w)(G/B). We again get
WoW 0 0 w
that the X v e a #-basis for the Chow ring of G/B. We will adopt this
point of view 1in Chapter V. Formally, this is identical to the Schubert

plcture.

(5.4) There is a remarkable relationship between the cohomology ring of a
Grassmannian and the combinatorics of symmetric functions. Suppose we con~
sider a polynomial ring ZEXI,...,Xn] in finitely many variables. There

are several alternative generating sets for the subalgebra invariant under
the action of the symmetric group Zn permuting the‘ Xi's. There are the

familiar elementary symmetric functions:

s, (X

; 1reeeoX ) = in .

1 1 j

where the summation varles over 1 = 11 <**< 1 =n, 1 =3 =n, They have

3

a generating function

n
Ima+ xiT)
i=]
If the generating function 1s replaced by
n
-1
o1a- XiT)
i=1

the coefficients of the Tj, 14 % n, glve another generating set
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hl""’hn’ the complete symmetric functions,
n
Now suppose a = (al >--'>an) is a partition of la] = 7 ay into n
i=]
distinct parts. Then a = A + p (pointwise) where p = {(n-1,n-2,...,0)

and 11 = (al— (n—l),az— (n—2),...,an). We can antisymmetrize the monomial

A, = L sgn(@ox%
UGZn

The polynomial Aa is anti-symmetric, i.e.
o(A,) = sgn(9)A, o € Xn

Now it 1is easy to see that the polynomial

- A A-l A=a+p

SX a”p

is a symmetric polynomial, being the quotient of two anti-symmetric ones.
It is called an S-function (or Schur function)(see [101]). The S-functions
SX(Xl,...,Xn), X as above, form a Zbasis for the algebra of symmetric
functions. In any case, it should be possible to write each polynomial S)L
as a polynomial in the complete symmetric functions. Jacobi [79] found such

an expression; 1t 1s often referred to as the Jacobi-Trudi identity.

S, = det(h )

M-+’ 54,3 =0

The reader should not overlook the striking similarity between this result
and the Giambelli formula (3.5). Here the SX corresponds to the Schubert

classes and the hi to the special Schubert classes. Is there an analogue

of the Pieri formula? Indeed, there is an even more general result called

the Littlewood-Richardson rule, 1t allows one to compute the coefficients

n ‘
Clp in the expansion
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n
S.-S =) ¢C
T Z:] At

A (complete) proof can be found in either Macdonald's book [101, p. 68] or
Schutzenberger (124. When Su = hi (letting u = (i)) one obtains a pre-
cise formal analogue of the Pieri formula (3.6). According to Stanley
[137, p. 238] this connection was firgt observed by Lesieur [ 4¢] and redis-
covered many times since. Explanations for this coincidence have been sug-
gested by Horrocks [73] and Carrell and Lieberman [23]. Work of Lascoux
[92]1,[93] has exploited the combinatorics of Schur functions to understand

the geometry of Schubert varieties. We recommend [137] for a more detailed

exposition of this circle of ideas and further references.
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M 4

IV  Schubert calculus of the coinvariant
algebra

We now have all the tools at our disposal for the grand synthesis. Supposc
W 1s a finite Coxeter group. The Borel picture 1dentifies tte coinvariant

algebra S, with the cohomology of a flag manifold G/B. On the other hand,

W
the Schubert picture provides a Schubert calculus for the cohomology of G/B.
In this chapter, we avold the geometric intermediary and produce the Schubert
calculus directly for SW' One advantage 1s an extension to the uon-c¢rystal-
lographic Coxeter groups. Another is that once one has Borel's theorem the
Schubert calculus becomes an immediate algebralc corollary without any de-
pendence on the Bruhat decomposition. We work directly with the length func-
tion and Bruhat order on the Coxeter groups (I,§§1 and 6) and the (anti-)
invariant theory for these groups described in (II, §83 and 4). We avoid any
mention of Lie groups, homogeneous spaces, etc, Notice although the defini-

tion of the coinvariant algebra S, depends only on VW, the Schubert cal-

W
culus depends on the cholce of a geometric realization (A,%) (see T, £3).
For example, the coinvariant algebra of the hyperoctahedral group supports
two different Schubert calculi coming from the root systems of type Bn and
C.
n

In section 1 we begin the program of finding an algebraic substitute for
the Schubert varieties. Intuitively this is obtained by viewing homology
classes as linear functionals on S(V). By dualizing, we get algebraic mod-
els for the Schubert cohomology classes and show they form a basis for Sw.

4
This result glves another expression for the Poincare series of the coinvar-

iant algebra.
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