Sections 2 and 3 are devoted to proving appropriate versions in Sw of
the Giambelli and Pieri formulas, respectively, using the machinery devel-
oped in §l. In addition, a version of Poincare'duality is derived coming

from the involution w - Wow on the Coxeter group W. We also exhibit a

concrete computation.
If 8 < S, the parabolic subgroup WG acts on Sw and we compute its

action and its invariants in section 4, This leads to a relative basis theo-

W
for S o
rem W
In section 5 we apply the machinery of the preceding sections to analyze

in detail the 3, x zn—invariants in the coinvariant algebra of Zn+k' By

k

restricting the Pieri formula for § down to this subalgebra we obtain

b
an alternative algebraic derivation o?+the classical Pieri formula for the
Grassmannian (ITI, 3.6).

Finally, in section 6 we collect two loose ends. First, we give a heuris-
tic account of the result of Bernstein, Gelfand and Gelfand [6] that insures
that the algebraic construction of §1 agrees with the geometric Bruhat decoh-

position. Second, we compute the torsion primes of G following Demazure

[381].

§1. BASIS THEOREM

Our .first goal is to produce an algebraic substitute for the cohomology alge-
gra and the Schubert classes., The ideas required to do this seem to have
been independently (and almost simultaneously) discovered by Demazure [ 38],
[39) and Bernstein, Gelfand and Gelfand [ 6 ]. Most of this section is lifted

directly from [38].
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We fix a geometric realization (4,Z) of (W,S) so that we can speak of
positive roots, weights, etc. (see I, §3).

We begin with a small amount of motivation. If Xw 1s a Schubert class
in Hze(w)(G/B) (see III, §4) we can define a corresponding linear functional
D, on S(V). This functional vanishes on S,(V), j # £(w), and on

|
W), Dw(f) = <Xw,c(f)> € ¢, where < , > is the usual Kronecker pair-

Se(w)
ing of homology and cohomology. We will construct algebraically the linear
functionals that arise from the Schubert classes in this fashion. That they
actually do arise in this way is a geometric theorem of Bernstein, Gelfand
and Gelfand [g ] which we discuss in §6. In any case what we do construct is
some Schubert type description of the coinvariant algebra Sw.

The functionals we need have already been introduced in the course of our
proof of the Chevalley theorem (II, §3). Recall that, if a €V, we can
define (analogous to (II, 3.4))

s f - Sa(f)
a a
where f € S(V). This operator on S(V) clearly reduces the grading by 1.
If e:5(V) > € denotes evaluation at 0, then eAa is the correct model
for the Schubert class Xs , @ € Z, We will exploit these A-operators to

a

*
algebraically reconstruct the map ¢:5{V) + H (G/B) (except that our map

preserves degree). We begin with an omnibus lemma.

(1.1) remma. If a €V, o€ Sl(V), u,v € S(V), ¢ € Aut V, then
(a) s & =4
(b) A
<s_>
(c) Ker(AG) = S(V) (i.e. sa—invariants)
-1
(d) ob ¢ A(p (@)

(e) ﬂa(uv) = Aa(u)v + sa(U)Aa(V)



(£ a8, <Xy
@ 8, = (@a)

¢h) [Aa,w*j = (w,a_v)sa

proof. (a)-(d) are straightforward and left as an exercise for the mead-
er, (e) 1s a restatement of (II, 3.4%)., For (f), suppose f € S(V),

u € S(V)E. By (c) and (e), Aa(fu) = Aa(f)u € Iw. For (g) we have

m—saﬁn) . w- (o= (@,a")a) = (w,a")

a

Aa(w) =

Finally for (h), 1f u € S(V), then

(o 00 1) = 80" () = o"s_(w)
wu-s {wu) u-s_(u)
= a _ CL)( a )
a a
= Aa(m)sa(u)

.

so (g) completes the argument.

The immediate goal is to show that it is legitimate to define Aw =

A eeeA vhere w=38 ...s is a reduced decomposition of w € W. The
(11 (Ik (Il

strategy is to identify Aw s where w,. 1s the longest word (which yields
0

Q0
dividends in §2) and then induct down using the rank 2 Coxeter groups. We
let d denote ] 4B € SN(V). Recall (II, §4) this is precisely the genera-

-W pea W
tor of S(V) as a free, rank 1 S(V) -module!

(1.2) Proposition. Suppose Wo = 8 ree8 - Then
N

-1 N
boeen = dHEDYN 4 T qw
q" " Sy 0 wwoq"

where q, € S{V), the field of rational {unctions on V.
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Proof. We have

-1 -1
A "'Aa =a, (1—81)...aN (l—sN)

%1 N
N -1 -1 .
-1)7a] LIRPRL T W z aw
witw
¢
where si =8, It now remains to see what happens in the first term as we
1
pass the reflections s; over to the right. We get
N
N -1 N -1

(-1) (iglsl...si_l(ai)) Sqve Sy But by (I, 3.6 ) this 1s (-1} ¢ wy since
wl=w, and w T = 4", We now let q_=ad and we are done.
0 0 0 W w

We now show that the vector space SN(V) decomposes into an invariant and

an anti-invariant piece in order to identify the qw's of (1.2).

(1.3) Lemma, If uy € SN(V), then J(u) = \W|u (mod Iw), where

J(w) = 2(-1)" Wy

Proof. For any a € %, ua € I, (11, 3.10). Writing ua = Zuifi,
W
fi € S(V)+, ve easily check u + s (u) = Z.Aa(ui)fi € I,+ Hence

2 (w)

sc(u) = -u(mod Iw), so that w(u) = (~1) u (med IW)‘ The result follows

from computing the appropriate sum over W,
(1.4) corollary. SN(V) = (IW)N + €+d.

Proof. Write u = T%T{IWIU - J(u)) + W%H—J(U) and observe T%TJ(u) 1s

divisible by d, being in S(V) 7",
We can now show

(1.5) Proposition. If ¢ 1s an S(V)w—endomorphism of S(V) that reduces

the grading by N, then d¢ = \J, for some '\ € {.
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proof. By (1.4), we can write u € S (V) as ju,f, + pd, with

fi € S(V)Z’ u € sV, deg(ui) < N, p € €. Hence

¢(u) = z:(p(ui)fi + pp(d) = pp(d)

d
Similarly, J(u) = pi(d), so de(u) -%_llj(u)’ so we let )= T
Finally, we can show

(1.6) Proposition. If Vg = 8, +eS i1s a reduced decomposition of the

1
=1
longest word then A ...A =4 "J.
T
Proof. By (1.5), da ...A = AN = K(—l)Nw0 + 3 (-l)a(w)Xw. Also by
ay ay : .
1.2), dA ...p = 1Y%, + 2 qw- By Dedekind's theorem, the w's are
b D 0

linearly independent as automorphigms of S(V), so X\ =1 and the result

follows.

(1.7) pProposition. The endomorphisms Aw,nw & W, are well-defined.

Proof. It suffices to show that for all q,8 € 2

AGABAG ves = ABAGA[S vae
with maB terms on each side. . But the rank 2 7root systems have
S 8.8 ... = 8.8 S,.... as thelr longest word, so (1.6) completes the argument.
a B a B a™B

Now we let f denote the algebra of endomorphisms of S(V) generated by
the Aa’ a € 5, and multiplication cperators w*, w € Sl(V) = V*. Clearly,
Mw is an S(V)-module. We let ﬁw denote the subalgebra of S(V)* obtained
by applying ¢ to every operator in by The composition

*k 1* —%
S(V) -~ s(V) *ﬂw

—*
iz our model of the map c¢ and, following Demazure, we christen Hw = mw.
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the cohomology of the root system (A, ). We claim

(1.8) Proposition. A‘J is free as an S(V)-module, with basis {Aw:w € Wy,

Proof. To show the Aw generate AVV it suffices to show that in the

*
composition Aa-m , Aa can be moved to the right. But by (l.le)
A *()
Lo Aa(wv) =4 @v+ Sa(w)Aa (v)

* * *
so Aam = Aa@n) + ﬁaﬁn) Aa' The Aw's are linearly independent operators

on S(V), hence also on S(V).
Before we prove the main result we need the following fact.

(1.9) Lgmma. If I 1s a graded ideal of S(V) containing Iw and con-

taining no multiple of d then I = IW.

Proof. By (II, 3.10) (Iw) =S (V) for all n> N. Hence I = (L)

n n n Wn
for all n> N. If n=N (1.4) completes the argument. But if u ¢ Ié,
n< N, say n=N-1, w ¢ Iﬁ = (IW)N’ for all g € § and the proof of

(1.3) implies u € (Iw)n. We are finished by induction.

(1.10) Basis Theorem. The algebra Hw possesses a basis {Xw:w € W} dual

to {5-Aw:w€ W} The map ¢ 1is described by

(1.10%) cf{u) = ¥ ea (WX
w w
weW
Furthermore, it is onto with kernel = Iw, 8o induces an isomorphism

S . .
wr Hy
Proof . The only assertion that is not obvious concerns the kernel. But

by (1.9) it suffices to check c(d) # 0. We can compute, by (1.6)
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o @) = dtr@) = dtwja = W] # o0
o

so by (1.10%) the proof is complete,

We can now justify the remark following (3.10) of Chapter II and derive an

interesting identity. Namely:

(1.11) cCorollary. The Poincare’ series of the coinvariant algebra Sw is

(a) PS(s,t) = L ¢£07
wéW
and hence
d
n i
1-t
(b) z AL I
weEW i=1
where d ..,dn are the fundamental degrees of W,

1

Proof. The first assertion is a consequence of (1.10} and the second

follows from (II, 3.10).

Remark. The left hand side of (1.11b) is sometimes called the pPoincare’
series of the Coxeter group W. It is always a rational function of t

(cf. [%9), 19,p. 45 1) and often éatisfies a functional equation. Computing
such generating functions often yilelds interesting identities. Macdonald
[59] has written down the Poincare series of the affine Weyl groups in terms
of a height function on the root system. There is alsoc recent work of J.

Cannon on the hyperbolic Coxeter groups [22],

§2. GIAMBELLI FORMULA

In Chapter III, we saw that among the Schubert classes, there existed special
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Schubert classes that algebraically generate the cohomology. We would like

analogous classes in the algebra Hw. Indeed, any basis Bl""’ﬂn of the
*

vector space V 3V ylelds 1-dimensional algebraic generators for 5(V)

and hence algebraic generators for HW' The most natural choice however

turns out to be the basis {wa}aEZ of fundamental weights (see I, 3.9).

This 1s made clear by (1i) of the following.

(2.1) Lemma.
(1) Ap(wa) = 505
(11) cf{w ) = X
a s

a
(111) c(P) = 2 (p,a"dX_
a€z a

Proof. (1) follows from (l.1c) and the definition of the  's. For (ii),
a

we compute using (1):
c(wa) = w%weAw(mq)xw

) B%zaﬂ(w“)xw ) xsa

Finally, (111) follows from the expansion a = 3 (a,p")ew, and (i1).
Bez B
Remark. If we identify (Hw)1 with Pic(G/B), the formula (2.1 (1ii))

appears in Iversen's work on algebraic groups [77].

Hence, the goal is to find for every w € W a polynomial Qw(Xl,...,Xn)

such that c(Qw(ma EEEIN ) = Qw(XS ....,XS ) = Xw' (0f course, such a
1 n o %

QW is nect uniquely determined). Certainly, it will suffice to find a poly-

nomial PW(Xl,...,Xn) satisfying c(Pw(al,...,an)) = Xw. Then Qw will be

BGZ' We follow

this strategy here. Tirst, we will give an explicit form for Qw
0

determined by (2.1 (ii1)) and the "Cartan matrix" (a,BV)
[s Y
and then
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show that all other Qw can be obtained by applying appropriate jA-opera-

tors. We begin with

(2.2) Lemma. A 1s quasi-multiplicative, i.e.

Bt 1f 2Gm') = £(w) + £u')
wow 0 otherwise
Proof. The first clause iIs immediate since the condition means that re-

duced decompositions of w and w' can be juxtaposed to yield a reduced

decomposition of ww'. To show the second part we induct on £(w), If

L(w) =1, so that w s s for gome o € %, then by (I,1.6 ) e(saw') =
2(w') - 1, Since w' = sa(saw') and L(w') =1+ (¢(w') -1) = 8(sa) +

t =
B(SGW ) by the first part we get L Asnﬂsqw" But by (1.lc)

O=ASABA5W'=ASAW'
a a a a

If 2(w) > 0, we write w = sav with £{w) = 1 4+ 2(v). We have two cases
1) tvw') < 2(v) + 2(w'), Theﬁ, by induction,
Bs yhyr T 4 L8 = g 0=0
a a a
2) £L(vw') = £(v) + £(w'). Then, we have
e(saw') < Z(sav) + 2wy =1+ g(v) + 2w') =1+ g(vw')
so, by (I, 1.6), -B(SGW') < 2{vw') and induction again vields

Asaﬂvw' = 0; hence
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By whyt = Bg BGAge ™ Ay A = 0

This completes the proof.

(2.3) corollary. Aw'Aw'lw = Gw,w'Aw for all w,w' ¢ W.
0 0

Proof. If w = w', the result follows immediately from (2.2}, For dim-
ension reasons, it suffices to consider w' # w with g(w') = p(w). But
we can compute by (I, 1.3)

e N ) = e - s YY) < gGwy)
0 0 0
= g(w') + (E(WO) - 2w))

= f(w') + Z(W—lwo)
Hence, again by (2.2), Aw'Aw’lwn = 0.

We can now dualize this result to the following assertion. From 1t one

can read off the desired polynomials Qw'

(2.4) rheorem. (Giambelli formula). 1In the algebra H,, for all w €W

d
c(a o)) =X
w—le |W| W

d
Hence, in particular, cGT—T) = X .
W W

0
( (S = T oea,( 49
Proof. (4 _4 CIREE eb (8 (le
ww w'EW w w0
= ¥ &5 ,eh o d
w'Ew Wy W WO(iW£)xw'
LW )=¢ (w)

1 d _
= dJ(|—Wr)Xw a Xw
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One dividend of our work onm relative invariants (I, §4) is the following

alternative expression for Xw .

)
(2.5) Proposition% Let fl""’fn be the fundamental invariants of W.
Then if D = detﬁggl) is the Jacobian of these polynomials, there is a
A € € such that C%KD) = Xw .

0
proof. This follows from (I1,4.49, since d 1is exactly the generating

anti-invariant.

(2.5.1 } Example. Let W = W(Az) = 23 where A2 is the root system in
3 3
3
{iflkiei.iflki 0} ¢ R” with simple roots 3 = {g= el—ez,p = ez—e3} and
positive roots A = {a,B,atf}

" I a+B sasﬁsa = SBSGSB
! SBQQ Basﬁ
-
- f ¢ s s
| @ P
~a-p | -3 L

1
We have X, = c(gaﬁ(a+ﬁ)). As a check, we compute the Jacobian of the fun-
0
damental invariants. (In general this Jacobian is the Vandermonde deter-

minant of th 's), = -
e e, 's) Recall 9, (e2+e3)(e2+e3) + e and

1 2%3
o4 = —(e2+e3)e2e3, (where we eliminated e, = -(e2+e3) and hence also ol).
Then

3 -a

2 2 3
D 3(e2e3 - e3e2) + 2(e2 - ey

as can easily be checked. We can now apply the A-operators to get:
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d 1
AGCEJ = ;ﬁ(a+ﬁ)
and

ABAQ(%) = %AB(B(CHB)) = %(Zaﬂa)

so that XSQBEE c(%B(a+B)) and Xsa = c(%(2a+ﬁ)) = .
2

-1
-1 2) we have

Since the Cartan matrix is (

a=2w -
a

B
B = -0, + 20

B

so, for example

1
==(-X +2X Y +XxX )
«°p 3 sa SB Sa SB

2

=l(—x + X X +2x2)
3 s s. 8 s

a B a P
which will be confirmed in the next section in a different way with the Pieri

formula.

Remark. It is possible to derive another expression for the fundamental c¢lass

Xw by examining the degree N homogeneous part of Weyl's denominator for-
0
mula (see [6, p.17 ]). It is

N
= £
Xw = NI {mod IW)
0
where o 1s the (familiar) half-sum of the positive roots (equivalently,

p= I w).
aez ?
As an application of the machinery of this section we compute a version

of Poincare’ duality for the coinvariant algebra S We begin with the fol-

W

lowing easy observations.



(2.6) Lemma- If a €% and u,v € S(V), then

d
= A G (V)
Vo || o
A (4 (w)v) = A (up (v))
a a a fad
- by X
: 0 Yo
Proof. Invoke (1.1 a,b and e),
It is now easy to show that X 1s the "Poincare dual" of X .
(2.7) Lemma. I1f w €W and wu,v € S(V) then wo w W

(2.9) 7Theorem- If w,w' ¢ W then in the algebra 8

4, (4 (V) = 4 (s _ ). Y
0 0 w
X *X r =5 '
Proof. By induction on £{w) 1t suffices to check it for w= s , woWg¥ WaW W,
a
a € Z. But, by (2.2) and (2.6), g
pProof. Letting v = A '_1Gﬁﬂ0 in (2.8), we get
W
4, (4, (w)v) = A, oA, (4, (W) d
0 0 X X =X c(a )
W wow' W w,-l |W|
" &y 08, () i
Wo¥ =17 W) Yo
= Aw (UAW(V)) w
0 =5 X
so the proof is complete. "o w,W' Yo
. by (2.3).
(2.8) pProposition. If w ¢ W and v ¢ S(V) 1is homogeneous of degree
N - £(w) then, in Sw This result gives a precise description of Poincare duality for the coho-

X +c(v) = A V)X mology of the flag manifold G/B.
W W W W

0

»

Proof. We compute using (2.4), (1.10%) and (2.7).

d §3. PIERI FORMULA
X,elv) =cla (TﬁT)).C(V)
w oW Recall that the algebra of operators MW was generated by the Aa's, 1 € %

* .
= c{p -1 GJLO v) and the multiplication operators w , w € Sl(V)' Using the S(V)-~basis con-
w

vy 'WJ * *
structed in Section 1, if one composes such operators, say w Aw or A
d
Awo(Aw‘lw (|w‘)V) it is possible to express them as S(V)-linear combinations of the Ag' g €W
- *
Of course, our eventual concern is with the algebra by, and oo by, 0. So

* s
if we compute the commutator [Qw,m ], an application of ¢ will yield a
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* *
formula for A w . Essentially, such a result is our Pieri formula for H, Let us call the jth summand P,. Now, by (1.1h) we have [Ae oo ] =

3

disguised in 1its dual form. (Q;,QDSG . TIf we substitute this into Pj and drag the reflection SU over

In order for an induction argument to work smoothly it 1s advantageous to to the left we get

work with the slightly modified operator w_lAw {(recall W E'ﬂw’ since

v
P, = (8,5, -2 s, A -
8, = 1- aﬂa). The main result is ] J 8 ej-l Qj 8j+1 6
| = (6),w)a_ & cerd 5 s
* -
(3.1) Theorem. If w €W, w € V then in End s(v), h| ej Sej(el) Sej (Gj_l) ej+1 ek
-1
-1 * -1, .V -1 = (g - R
[w 80 ) = );‘ RN MRS P (ej,m)sej(wj.) ij.
“
We fix a reduced decomposition W = 8,...5, where s, =8 and set To see this final identity, we must argue for
4 ‘
vy - sk...si, 1 <41 =<n, We have the following easy observation. 91 1> 3
g, =
= = = i j 8 (e ) i < j
(3.2) Lemma. Let 61 Sk"'si+1(ai) wi+1(ai), 1=1«<k, ek a - Then ’ ej i
-1
(1) w A =A. A o A, . -~ . . ) B
W 91 82 Gk where ei,j Sk"'sj"'si+l(ai)’ i.e. the 91 s for wj. The first asser
(i1) Sy (w;)-1 = w‘l, where w; i P RRRL PRSI tion is easy and for 1 < j:
1 h
Proof. By (1.1 d), we get sej(ei) = Sk'"Sj+lsj5j+1"'sk(sk"'sj+1sj'"51+1(ai))
w-lA = g ...8. A ...A = A 8 aea8,A J..A = g ,,,; - (a.) = 6, ~
W k 1 a O sk...sz(al) k 2%, ay k 3 1411 1,3
* = A, 8 «0eB,8 .. A Now, by (3.2 ii)
61 k 2 a, a

-1
Pj = (G;am)w Aw,.
and induction completes the argument for (i). Finally, the second part fol- i

lows precisely from (I, 3.6) applied to wi-s ...sl. and, also, 8= (6 )wg = w‘,‘se = w. In the notatlon of the Bruhat order (I,46):
k 3 1
wi(o,)
Proof of 3.1. We compute WE —J——J—o w. Hence (I, 6.4, 6.6) allows us to reindex by the immediate sub-
-1 * % words
{w Aw,w ] = [Ael...Aek,m ] .
-1 -1
X . LR = ()T v,
= Ay ---Ae [nn 2 G ]Ae' ...Ae . 4=1 w' S

21 Py 3=1 j+1 k
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'-1 - ~ -1 -~ =
where the computation w' “(¥) (wj) (“j(ej)) Sj verifies the coeffi Now by (I, 6.l.c) we can rewrite (3.5) in the following equivalent form.

cient. This completes the proof.
- . = v
(3.6) corollary- In Hps XX, z (p ,uh)st

3) Corollar If weW, wev then 4 ¥ e *w'1A + 7z ((w')'l( Y ¢ pea”
(3.3) Co y. I > W @ w g Yo &(wsB)=fe(w)+1
m)AW'.

In practice, this expression i1s more convenient. We return to the situa-

Proof. Multiply (3.1) by w. tion examined in the last sectiom.
(3.4) Corollary. eoh o = 3 (W) LimY,wen

: ’ W W' % ! w'’ Example. In H. , we computed

3
Proof. The first term on the right-hand side of (3.3) is annihilated by %) X - ;{_xz +X X+ 2X2 3
s 8 3" s 88 |
_ p a %% %
We have the Bruhat order on 23
It is now easy to dualize and cbtain s

ﬁsasp - SQSBSCL

(3.5) Theorem. (Pleri formula). If w €W, ¢ € %, then in Hw

X = L ‘(w-l(Y)V,m)Xw.

Xs %o
a wiw
Proof. Choose u such that 'sAw,(u) - wa" (for example, the expres-

sion given by (2.4)). Then

X = .
X c(mau)

- w'%wsﬂw,(mau)xw,
- T w*(u)x where the notation w —-w' means ws = w'- We can read off from (3.6)
. w'Ca . Y

that

- ¥ -1 v
w‘E"J’(gxw'(g ) .ma)eAg(u))Xwn 2 = x

] - o s, SBsa

= L '(g o) ,ma)ﬁgw)xw' X X =X +X
wEW g 8.8 s S s s

X R

LG mhax, s xsasB

and this checks our earlier computation (2.5.1).
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In Chapter V, §3 we will investigate the rich combinatorial structure

inherent in formula (3.6).

§4, PARABOLIC INVARIANTS

If (W,S) 1is a Coxeter system and 6 S 5, then (WG,G) is also a2 Coxeter
system and recall We is called a parabolic subgroup of W, 1t is easy to
see that a geometric realization (A,Z} of (W,3) can be restricted to a
geometric realizatien (Ae,Ze) of (We,e). Recall that in (I, §5) we showed
that

we = {w € W:l(ws) = &(w) + 1, for all s € 6}

= {w € W:E(wsa) = f{w) + 1, for all a € Ze}

forms a complete set of left coset representatives of We in W and each

has minimal Ilength in its coset.

.

W

In this sectlon we analyze the subalgebra Hwe of w0~invariants in the

colnvariant algebra Hw. According to our remark in Chapter III, for an

appropriate choice of W in 2 we are really studying the cohomology

8

of the Grassmann manifold. We return to this special situwation in §5.

ntk?

The most straightforward approach is to compute precisely the actiocn of

W on Hw. This is easily done by utilizing the computation (3.4).
(4,1) Theorem. The structure of H . as a W-module is determined by

X Jif 8(WSG) = fw) +1

v X- L (swiY,ox , 1f t(ws )= E@w) -
wsax?w' a w “Fu v

where w € W, a € 3,

Proof. As in (4.5), choose u such that 5Ag(U) = Ggw . Then since ¢

is a W-map
s X, = c(sau) = W'EWSAW'(SGU)XW'
. ) *
= w|>Ew8AW' (1 - a Aa) (u)xw!
*
=X - 5'(5Aw,a )Aa(u)xw.
_ _ -1 "
- X, g%w'(g (5008 8, (WX,
= X g%w‘(g (") L OX
gla) eat
gs, = W
=X - 7 (s w_l(Y)V a)X
Voous T “ ’ v
a

Note, that the summation in the last line is non-vacuous 1f and only if

E(wsa) = f(w) - 1, This completes the proof.

(4.2) C 11 X € We if w € We
. orollary. - HW .

Proof. Immediate.

t] -
It remains to show that the Xw’ w € W', actually generate the W -invar-

iants. We use a dimenslon argument. Firstly

(4.3) Lemma. If V 4is the regular representation of a finite group ¢ an

H 1is a subgroup of G, then
H i
dimm(V ) = |G/ |H|.

Proof, lLet be a basis for V, so that

{eg}gec



g'-e =

B gg'
Then, if v = Zve ¢ VH, we claim v_=v ,, 1if g = g' (mod H). Indeed,
i g B 8 g 8
if g=g'h, h €H, and if k(v,eg) denotes the coefficient of eg in
v € V, then:
v , = kiv,e ,) = k(h_lv,e ) =V .
g g g 4
H

Hence, there are at most |G|/|H| free parameters in determining v € V

and clearly each choice gives an invariant. This.finishes the argument.

W

(4.4) corollary. (Basis theorem for Hwe).
W

w € we, are a C-basis for Hwe.

Yo 8
dim H "~ = |W | and so the X

Proof. This follows from (4.2), (4.3} and (II, 3.14).

As in §1, we can use this basis result to derive an expression for the

”
Poincare series,

(4.5) corollary. Suppose W has fundamental degrees dl,...,dn and We

has fundamental degrees S ERRERL AN (Note W is very often reducible).

5]
Then
: W
8 £(w)
(a) PS(s . ,t) = L ¢t
w wEWe
and
n d
I (-t Y
) R
wew® n-m ej
(1-t) a9
j=1
Proof. f{a) follows from (4.4) and (b) is a consequence of (1.11) and
(I, 5.3).

154

Example. Suppose W = Zn+k and = 8§ - {Sk} so that We = oxou (see

§5). The fundamental degrees of W are 2,...,n and those of wo are
2,...k, 2,...n. Hence
¥ ntk n+l
PS(S?( n .y - L tk Yoo (1-t™H)
n+k (1-t7) -+« (1-t)

The polynomial on the right 1s the Gaussian polynomial [n:k]. Tts coeffi-
cients are the Bettl numbers of the complex Grassmann manifold (after re-
placing t by tz).
Exercise, TFrom (II, 3.13) check that the Poincare series af w“, where W

is the hyperoctahedral group and § = {sl,...,sn_l} (so that w0 = zn) is

given by

(-t @™ 4 ™)
(1-1) A-t3) e (-t

1f n is even
PS(we,t) -! n+1 n+3 2n
Qa-t -t ). (-t )

3 n if n 1s odd
o e aee

§5. GEOMETRY OF THE SYMMETRIC GROUP
In order to bring the abstract results of §§1-4 back down to earth we give a

complete analysis of the coinvariant theory of the symmetric group ok and

its parabolic invariants. This has the pleasant consequence of giving a com-

pletely algebraic derivation of the classical Pileri formula discugsed in
Chapter III, §3.

We fix some notation. Let W = Z o’ the Weyl group of type A ., -

In Chapter I, §3 we wrote down the usual geometric realization of W, We

adopt the notation from there. Furthermore, let s be the reflection

13



+
corresponding to e~ ej € A and P Si,i+1’ 1 =1« ntk. Our first goal

i{s to write down the Pieri formula for SW' We begin with an easy length

computation.
(5.1) Lemma. If w €W, then

tws, ) - £(w) = pij(ZIIijl + 1)

ij
where

+1 if w(l) < w(i)
p =
)1 15 w() < w)

Iij = {f <z < j: w(z) is between w(i) and w(j)}. In particular,

8(wsij) m L(w) + 1 4if and only 1f (1) w(l) < w(j) and (i1) there are no

intermediate w-values, l.e. = ¢. (We abbreviate this pair of conditions

I
by w(i) << w(j)).

,

Proof. Recall that the length function on Zn+k is given by
ntk-1
Ew) = % ej(w), where ej(w) = I{i > jw(d) < w(j)}[, the number of in-
j=1

versions above Jj. Hence

Z(WSij) - 2(w) = (ei - ei) + (e -e,) + X (e; - ez)

3 J 1<z<)

where e, = eg(w) and ek = eg(wsij). Certainly right multiplication by

sij does not affect the values of e, below i or above j. Also
ej = e, + [{1 = 2z < §iw(z) < w3} = ej te
eé =e, - [ < z = jiw(z) < w(i)}] = e, - e.

So we get
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(e} - e+ (e3 - ej) = (e, te-e)+ (e - e - @j)

3

=e-e= pij(llijl + 1)

inj £z €1,

otherwise 5 putting all this

It is also easy to see e' - e =
z z LO

together we get the result. The second assertion follows immediately.

We can now write down the Pileri formula (3.6) for SW'

(5.2) Proposition. 1f w € W, 1 =1 < n+k, then in Sw

X, "X, = = X o
(b,t) bt

where <(b,t) satisfies b =1i< t and w(b) << w(t).

Proof. By (3.6), Xw appears with ccefficient ((eh - et) ,m,) 1if

bt .

and only if 8(wsbt) = {(w) + 1. This is equivalent to wh) << w(t) by

(5.1). Finall ( - e )V = av Fooot aV so the first condition is also
YO8 T &

b t-1

needed and the coefficient is correct.
Remark. The Poincare dual of this formula appears in [1D06) p. 265].

3]
We now identify the set of left coset representatives W , where

€ =8 - {sk}. The corresponding subgroup W, 1is precisely Zk RO

1= d1 <o eag dk < n+k are k distinct numbers and 1 = di <ot d; © ootk

is an ordered enumeration of their complement, then we define

d),..0d) €3 by

d 1=1i=k

1
1,...,dk)(i) = di— k+l = 1 = tn

(d
k



(5.3) Lemma. W° = (@)5nen»d, )il
k

d)y= z

g(dl;---ok jnl i _j)‘

proof. Clearly 8((d1,...,dk)si

(5.1). stnce [WE| = W[/ ] =

the second, we need only observe

(dl,...,dk

e

]

According to the ideas of Chapte
calculus we must find algebraic gen

w € We.

Of course, in the case of
chose the 1-dimensional classes XS

generated by l-dimensional classes.

= d1 << dk <nt+k} and

) = g(dl,...,dk) + 1 for all i # k, by

), the first assertion follows. For

- d-3 4f 3 =k

0 otherwise

r III, €3 on what constitutes a Schubert
we
erators of H = Sw among the Xw,

Sw itself we had no problem, we simply

, 8 € S. It is no longer true that H is

Fortunately, we can use the ideas of

Chapter II to solve this problem. The map
: W
sV) %E>
is surjective. We also have
We
s(V) =‘C[T1,...,Tk,cl,...,cn]

where T, = si(el,...,ek), 1 <1=

and s denotes the jth

]

number of variables. The images ¢

(they are the special Schubert cycl

(5.4) Lemma. ec(o,) = (-l)jX
i Stj-1

k, and ¢ )alf.jfn’

; = Sj(ek+1""’ekﬂn

elementary symmetric function in an appropriate

(6.), 1 =3j=<n suffice to generate H

3

es of Chapter III, §3). We compute:

= (-1)3%x(1,2, ..., k-1,k+§).
---Sk

Proof. By (1.10%)

A
L(w)=]

ceo,) =

f o)X,

w( j

If
we write At for Ast

Ak(o - Sj(ek+1""’ek+n) - Sj(ek""’ek+n)
J ®k 7 ®ktl
- (ek+l—ek)sj‘1(ek+2, s ’ek+n>
€17 Cktk
= (-1)s, ,( )

j-1 et2? " 8

, then clearly At(Oj) =0, 1f t # k and

We can continue by induction and get Ak+1—j°"Ak(oj) = (—1)j, while any

other sequence of simple roots ylelds zero.

It remains to compute X(1,2,...,k-1,k+j)X{d d 3.

1reeeedy
is easy.

(5.5) Proposition. In the algebra H

X(1,2, .. kL)X, e 0d)) = L

di+l<di+

X(dl....,di+
1

Proof. Since = (1,2,...,k-1,k+1),

Sk

(5.2) and observe wi(b) << w(t)

To simplify notation we write Xi for X
s
i

» 1 =1 < ntk,

We then have

5.6) Lemma. - - - -
(5.6) remma. clo.) = s, (X 3= Koo X0 Xgeee X e X

The case

we can apply the case

if and only if w{(t) = wib)y+ 1.

i

=1



By the tables of [19], the ith fundamental weight is

i

Proof.

o e1+“'+ei - (n+ i

ve get
C(Gj) = C(Sj(ek+1""’ek+n))
= c(sj(mk;l_ok’""_°3+k—1))

= 8y KXo o X X e
since ¢ kills IW and (2.1 11).

This suggests the following computation.

(5.7) Lemma. TFor all 4, k+l =41 =k¥n, w € W; in SW
X~ X, )X, = z - L X - z Xua
= keb<i 1 bk bi
w(l)<<w(t) w(b)<<w (i) wib)<cw (1)
Proof. Computing with (5.2), we get
X X = DN § + T OOX
5y W b=t-1  “®pt 1t i
i<t - w(i)<<cw(t)
w(b)<<y(t)
and
X X = yx + ¥ X g
8401 ¥ bsi-1 bt bed bi
i<t w(b)ecw (i)
w(b)<<w (t)

Upon subtracting and breaking up the second term the desired expression

follows.

(5.8) Theorem. In the algebra H
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——i)oi(el""’en+k)' Hence w =e +-..+ei (mod Iw) and

- . - Dy
8y Koo X X )XW nd)) = (K1) LX(eyyenise)

w:ere the summ:tion ranges over (e ,...,e ) satisfying dy T ey = diy; a
Z e, =31+ 2 d,.
=1 1 =1 1
Proof. We can write
s, = b X -X Yoo (X, =X )
i leblzt <+ <<t o by Tyl S

It is not difficult to check that the third term of (5.7} alone yield the
right hand side of (5.8). Hence it remains to show that the contribulions
arising whenever either of the first two terms of (5.7) are involved cancel
in the final summation. To do this it suffices tc check that the resulting
subscripts in W do not lie in We. (Then they must have coefficient zero
since H 1s a subalgebra of Sw).

Now the first two terms of (5.7) always give a transposition atove k+l
and it must be an elementary ome by (5.1), say Sys 1 = k. Such a transpo-
We claim no further trans-

sition will send an element of We out of We.

position s with elither b =1 or ¢t = i, will put the subscript back

bt’

in we. Both cases are easy to check and the proof is complete.
Finally by a substitution from (5.4) and multiplying all degreces by 2

get

n+k

*
(5.9) Corcllary . (Classical Pieri Formula). In H (Gk(C )))

X(1,2,000, k-1, 00Xy, 0000 dy ) = Lx(el,...,ek)
-
where the summation 1s as in (5.8).
The advantage of this approach to the Pieri formula is its suggestive ger

eralization to other G/P, P a maximal parabolic of G. Suppose ¢ is a
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group of type Bn and Pa is the maximal parabolic corresponding to omitting
the "right-end" root a = a - {We return to this example in V, §3). This

is the space 802n+1(Un’ the manifold of totally isotropic n-planes in a
complex vector space of dimension 2n+l equipped with an appropriate orthe-

gonal form. There is a map
Z %
s(v) ~ »H (G/P)

It is alsc possible to compute this map explicitly, namely

c(cj) = 2X<j)

where (j) denotes in W(Bn). These Schubert varieties

Sn+j-1“'sn-~18n
X(j)’ 1 =3j =n, play the role of the special Schubert cycles. The case
i =1 4is worked out in Chapter V, §3. For j » 1, the result is complica-
ted by multiplicities, but one can still follow the strategy used in this

section. This result (and also the symplectic case) will be treated elsewhere

fe8].

§6. COMPLEMENTS .

We tie up two loose ends here. The first 1s a geometric identification of

our algebraic Schubert classes with the classes coming from the Bruhat decom-
position. This result is due to Bernstein, Gelfand and Gelfand [ 6 ]. The
second matter concerns an arithmetic property of the map c:S(V) —+ H*(G/B).

If we work integrally, c 1is not necessarily surjective. Can we describe the

cokernel? Following Demazure [38], we see that the order of the cokernel gives

the torsion primes of the Lie group G.

162

(6.1) It would be reassuring to have a result that guarantees that our

algebraic basis of the coinvariant algebra S coincides with the peomet:

W
Schubert varieties of (III, §4). This amounts to checking Dw = A, W€
where Dw is as defined at the beginning of §l. An argument for this apg
in Bernstein, et. al.[ 6] and we sketch an outline here.

Consider (3.4) above. 1If one could prove a similar formula with aAw

replaced by Dw’ then we Would be finished by induction on ‘f(w) [6,p.

But we also have

*
Dwma(f) Dw(maf)

<Xw,c(maf)>

= <Xw’xsa U c{f)>
<Xw-Xs ,e(f)>
a

by (2.1 1i) and the fact that intersection -+ is adjoint to cup product.
So it suffices to verify the following intersection formula for Schubert

homology classes

(5.1%) XXy = z (w"l(v),wa)xw.

¢ B
as in (3.5). There is a fundamental representation VCL of  determinec

by ®, which yields an embedding

G/B —+ P(Va)

where P denotes the projective space of lines. If we pullback the amp]
line bundle on P(Va) we get a line bundle La on G/B. The element

w € W yields a section on P(VG) which pulls back to a section 4 of

La' It turns out that computing the divisor of b is equivalent to comf

ting the coefficients in (5.1%), If w' 3w we gat a map



1wl
jw,m

= SLZ/B +G/B

'he multiplicity of XW, in xw'XS is equal to the multiplicity of the
%

rero of the function jT(¢w) on P, This is then computed using some

»lementary facts about representations of the Lie algebra 412 and the proof

s finished (see also [77, Lemma 6.5] for this type of divisor computation}.

(6.2) In (III, 5.3) we discussed briefly Demazure's analysis of the Chow

-ing of G/B [39]. This approach has the two-fold advantage of (a) repla-

-ing the complex manifold by a projective algebraic k-variety, k an arbitrary

11gebraically closed field and (b) working over the integers. Now the map

- 1s not necessarily surjective, but Demazure proves that coker(c) 1is
"inite. If t 1s order of the cokernel of cN:SN(V) - (HW)N then t kills
oker (c). The number t 1s called the index of torsion and its prime divi-
sors are called the torsion primes of G. It 1s the smallest positive inte-
rer for which there exists a u € SN with ikuj = td. Since J(d) = |W|[d,

- {|{W|. Demazure's computation of the torsion primes agree with the more

‘amiliar result for the complex groups [13]. It is

G ‘torsion primes
A : 1

n

B 2

n

C 1

n
D 2

n

E6 2,3
E7 2,3
E8 2,3,5
F4 2,3
G2 2

In particular, if G 1s a product of special linear and symplectic groups,

he map ¢ 1s always surjective.
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V Combinatorics of the Bruhat order

The Bruhat order on an arbitrary Coxeter group W was Introduced in Chapter
I, §6. More generally, one can consider the subset We of coset represen-
tatives (see I, §5) with the order inherited from W = w¢.

Suppose now W 1is a finite Weyl group. Following [L19, we refer to such
posets (= partially ordered sets) We as Bruhat posets. 1In Chapter IIT, &/
we gave a geometric interpretation of this poset in terms of the cell-decom-
position of a certain homogeneous space G/Pe. In particular, the Bruhat
order on W describes the relative disposition of the Schubert varieties ir
a generalized flag manifold G/B. It is not unreasonable to expect that a
better combinatorial understanding of the Bruhat poset WO will shed light
on the geometry of these varieties G/Pe. (Indeed, just such an applicatior
is worked out in §3). On the other hand, the Bruhat posets also provide an
interesting and tractable class of examples for combinatorialists.

Here is a summary of this chapter. We begin in section 1 by collecting
together some useful combinatorial jargen. It is intended to he a convenier
reference for the other sections. Section 2 beging the study of intersectic
theory proper by identifying a reasonable class of parabolics P, to work
with; the ones corresponding to a miniscule weight. The resulting varietie:
G/Pe support noticeably simpler intersection theories.

We study an intersection problem in §3; namely take an arbitrary Schuber!
variety and successively intersect it with the unique codimension one sub-
variety until you are reduced to counting points. According to #2, the onl:

interesting examples other than the Grassmann varieties are certain orthogo-
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